化工学报 ›› 2022, Vol. 73 ›› Issue (2): 960-971.doi: 10.11949/0438-1157.20211425

• 过程安全 • 上一篇    

坑道限制条件下水平丙烷喷射火火焰行为研究

周梦雅(),周魁斌(),王朝,黄梦源,王一凡,蒋军成   

  1. 南京工业大学安全科学与工程学院,江苏 南京 211816
  • 收稿日期:2021-10-07 修回日期:2021-10-31 出版日期:2022-02-05 发布日期:2022-02-18
  • 通讯作者: 周魁斌 E-mail:194153580@qq.com;kbzhou@njtech.edu.cn
  • 作者简介:周梦雅(1997—),女,硕士研究生,194153580@qq.com
  • 基金资助:
    国家自然科学基金项目(51876088);江苏省第十六批“六大人才高峰”高层次人才项目(XNYQC-005);江苏省研究生科研与实践创新计划项目(SJCX21_0447)

Flame behavior of horizontal propane jet fire in a pit

Mengya ZHOU(),Kuibin ZHOU(),Chao WANG,Mengyuan HUANG,Yifan WANG,Juncheng JIANG   

  1. College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
  • Received:2021-10-07 Revised:2021-10-31 Published:2022-02-05 Online:2022-02-18
  • Contact: Kuibin ZHOU E-mail:194153580@qq.com;kbzhou@njtech.edu.cn

摘要:

通过搭建坑道限制条件下小尺寸喷射火实验装置,模拟研究埋地管道泄漏场景中引发的水平喷射火火焰特性。火焰受坑道侧壁的限制,先撞击坑道而后沿着侧壁向上发展形成垂直火焰。实验结果表明,随着泄漏质量流量的增加,火焰长度先增加后减小,而火焰宽度不断增加。同时发现,在一定条件下火焰两侧会出现涡旋对,形成一对反向旋转的火焰,为了探究其形成原因及产生条件,结合数值模拟手段进一步研究了火焰流场不稳定性。

关键词: 坑道, 喷射火, 火焰长度, 火焰宽度, 不稳定性, 安全

Abstract:

A small-scale experimental device of jet fire in a pit was built, and experimental simulation was conducted to study the flame characteristics of horizontal propane jet fire caused by the leakage of pipeline buried underground. The flame is restricted by the side wall of the pit, first hits the tunnel and then develops upward along the side wall to form a vertical flame. The experimental results show that the flame length first increases and then decreases as the leakage mass flow rate increases, while the flame width continuously increases. In addition, vortex pairs, indicated by a pair of counter-rotating flames, were observed to appear on both lateral sides of the flame under critical conditions. In order to explore the formation mechanism of vortex pairs, the instability of flame flow field is further studied by numerical simulation.

Key words: pit, jet flame, flame length, flame width, instability, safety

中图分类号: 

  • X 931

图1

实验装置示意图"

表1

实验工况"

d/mmmc/(g/s)V/(m/s)U/d
2.00.03~0.375~6329.00
2.30.03~0.373~4825.22
3.20.03~0.372~2518.125

图2

坑道限制条件下火焰几何形态"

图3

坑道限制条件下喷射火实验重复对比(d=2 mm,mc=0.09 g/s)"

图4

三维几何模型"

表2

三组网格系统的计算网格数量"

Case网格总数网格平均质量最大扭曲度
11524510.834620.83
23250010.834800.82
34353490.835130.82

图5

不同网格数量模拟结果对比"

表3

模拟初始工况条件"

工况V/(m/s)mc/(g/s)Re
180.122.2×103
2120.184.9×103
3160.248.7×103
4180271.1×104
5200.311.4×104

图6

同一工况下瞬时火焰形态对比(mc = 0.12 g/s)"

图7

火焰长度和宽度数据对比(d=3.2 mm)"

图8

不同喷口直径下火焰长度随质量流量的变化"

表4

流动状态的临界雷诺数"

d/mm层流阶段-过渡阶段过渡阶段-完全湍流阶段
mc/(g/s)V/(m/s)Remc/(g/s)V/(m/s)Re
2.00.1219.5785440.2034.3614758
2.30.1216.0584430.2025.9814184
3.20.1612.2283890.2821.3814499

图9

无量纲火焰长度随喷口Froude数的变化"

图10

不同喷口直径下火焰宽度随质量流量的变化"

图11

无量纲火焰宽度随喷口Froude数的变化"

图12

特殊火焰行为演变过程(d = 3.2 mm, mc = 0.12 g/s)"

图13

不同喷口直径下火焰形态随质量流量的变化"

图14

特殊火焰行为演化频数(d =3.2 mm)"

图15

温度及速度在5 s内的瞬时变化(mc =0.12 g/s)"

图16

壁面中心线上温度与速度随距离的变化"

图17

流场中的R-T不稳定性(mc= 0.12 g/s)"

图18

浮力与理查森数随泄漏质量流量的变化"

8 Huang Y B, Li Y F, Dong B Y, et al. Computational investigation of flame extension height for horizontally oriented rectangular source jet fires impinging on a vertical plate[J]. Fire and Materials, 2019, 43(7): 821-830.
9 Wang Z H, Zhou K B, Zhang L, et al. Flame extension area and temperature profile of horizontal jet fire impinging on a vertical plate[J]. Process Safety and Environmental Protection, 2021, 147: 547-558.
10 Shi X, Bellino P W, Simeoni A, et al. Experimental study of burning behavior of large-scale crude oil fires in ice cavities[J]. Fire Safety Journal, 2016, 79: 91-99.
11 Shi X C, Ranellone R T, Sezer H, et al. Influence of ullage to cavity size ratio on in situ burning of oil spills in ice-infested water[J]. Cold Regions Science and Technology, 2017, 140: 5-13.
12 Shi X C, Sahu A K, Nair S, et al. Effect of ullage on burning behavior of small-scale pool fires in a cavity[J]. Proceedings of the Combustion Institute, 2017, 36(2): 3113-3120.
13 Liu C X, Ding L, Jangi M, et al. Experimental study of the effect of ullage height on flame characteristics of pool fires[J]. Combustion and Flame, 2020, 216: 245-255.
14 Artemenko E S, Blinov V I. Burning of liquids in vessels with change of level[J]. Combustion, Explosion and Shock Waves, 1968, 4(1): 39-42.
15 Dlugogorski B Z, Wilson M. Effect of ullage on properties of small-scale pool fires[J]. Developments in Chemical Engineering and Mineral Processing, 2008, 8(1/2): 149-166.
16 Chen R Y, Li Q W, Xu X K, et al. Comparative pyrolysis characteristics of representative commercial thermosetting plastic waste in inert and oxygenous atmosphere[J]. Fuel, 2019, 246: 212-221.
17 Gullett B K, Lemieux P M, Lutes C C, et al. Emissions of PCDD/F from uncontrolled, domestic waste burning[J]. Chemosphere, 2001, 43(4/5/6/7): 721-725.
18 Gullett B K, Linak W P, Touati A, et al. Characterization of air emissions and residual ash from open burning of electronic wastes during simulated rudimentary recycling operations[J]. Journal of Material Cycles and Waste Management, 2007, 9(1): 69-79.
19 Kimmerly V M, Rangwala A S. Laboratory-scale investigation of air entrainment in burn pits used for waste disposal[J]. Fuel, 2020, 276: 117941.
20 Armaly B F, Durst F, Pereira J C F, et al. Experimental and theoretical investigation of backward-facing step flow[J]. Journal of Fluid Mechanics, 1983, 127: 473.
1 Gómez-Mares M, Zárate L, Casal J. Jet fires and the domino effect[J]. Fire Safety Journal, 2008, 43(8): 583-588.
2 Delichatsios M A. Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships[J]. Combustion and Flame, 1993, 92(4): 349-364.
21 Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66.
22 Huang Y Q, Wang W Y, Lu K, et al. Flow-field evolution and vortex structure characteristics of a high-temperature buoyant jet[J]. Building and Environment, 2021, 187: 107407.
3 Gómez-Mares M, Muñoz M, Casal J. Axial temperature distribution in vertical jet fires[J]. Journal of Hazardous Materials, 2009, 172(1): 54-60.
4 Zhang B, Liu Y, Laboureur D, et al. Experimental study on propane jet fire hazards: thermal radiation[J]. Industrial & Engineering Chemistry Research, 2015, 54(37): 9251-9256.
5 马子超, 吕淑然, 王春雪, 等. 高压天然气管道泄漏孔位置对喷射火的影响[J]. 消防科学与技术, 2017, 36(1): 13-15.
Ma Z C, Lv S R, Wang C X, et al. Influence of leak hole position on jet fire of high pressure gas pipeline[J]. Fire Science and Technology, 2017, 36(1): 13-15.
6 Schefer R W, Merilo E G, Groethe M A, et al. Experimental investigation of hydrogen jet fire mitigation by barrier walls[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2530-2537.
7 董炳燕, 黄有波, 孟江, 等. 障碍物对天然气喷射火影响的数值模拟研究[J]. 中国安全生产科学技术, 2016, 12(1): 111-116.
Dong B Y, Huang Y B, Meng J, et al. Numerical simulation on influence of obstacle on jet fire of natural gas[J]. Journal of Safety Science and Technology, 2016, 12(1): 111-116.
23 Howell J R, Menguc M P, Siegel R. Thermal radiation heat transfer[M]. Boca Raton: CRC Press, 2015: 1016.
24 Palacios A, Casal J. Assessment of the shape of vertical jet fires[J]. Fuel, 2011, 90(2): 824-833.
25 Hottel H C, Hawthorne W R. Diffusion in laminar flame jets[J]. Symposium on Combustion and Flame, and Explosion Phenomena, 1948, 3(1): 254-266.
26 Suris A L, Flankin E V, Shorin S N. Length of free diffusion flames[J]. Combustion, Explosion and Shock Waves, 1977, 13(4): 459-462.
27 Gopalaswami N, Liu Y, Laboureur D M, et al. Experimental study on propane jet fire hazards: comparison of main geometrical features with empirical models[J]. Journal of Loss Prevention in the Process Industries, 2016, 41: 365-375.
28 Sugawa O, Sakai K. Flame length and width produced by ejected propane gas fuel from a pipe[J]. Fire Science and Technology, 1997, 17(1): 55-63.
29 Yule A J, Chigier N A, Ralph S, et al. Combustion-transition interaction in a jet flame[J]. AIAA Journal, 1981, 19(6): 752-760.
30 Davis R W, Moore E F, Roquemore W M, et al. Preliminary results of a numerical-experimental study of the dynamic structure of a buoyant jet diffusion flame[J]. Combustion and Flame, 1991, 83(3/4): 263-270.
31 Albers B W, Agrawal A K. Schlieren analysis of an oscillating gas-jet diffusion flame[J]. Combustion and Flame, 1999, 119(1/2): 84-94.
32 Kimura I. Stability of laminar-jet flames[J]. Symposium (International) on Combustion, 1965, 10(1): 1295-1300.
33 Asendrych D, Drobniak S. Buoyancy-driven coherent structures in free round flame[J]. Flow, Turbulence and Combustion, 2001, 67(4): 325-353.
[1] 宋健斐, 孙立强, 解明, 魏耀东. 旋风分离器内气相旋转流不稳定性的实验研究[J]. 化工学报, 2022, 73(7): 2858-2864.
[2] 张凤丽, 潘辉, 王金江. 基于多元状态估计的热交换器多参数关联预警方法[J]. 化工学报, 2022, 73(2): 814-826.
[3] 纪文涛, 李璐, 李忠, 何佳, 杨晶晶, 王燕. 聚磷酸铵抑制PMMA粉尘爆炸特性研究[J]. 化工学报, 2022, 73(1): 461-469.
[4] 赵文一, 匡以武, 王文, 张红星, 苗建印. 水平管内冷凝流动的稳定性[J]. 化工学报, 2021, 72(S1): 257-265.
[5] 李云浩, 蒋军成, 喻源, 王志荣, 张庆武. 穿孔与热辐射耦合作用下固定拱顶钢储罐的失效机理[J]. 化工学报, 2021, 72(8): 4433-4443.
[6] 刘荫, 王海清, 许小林, 刘美晨. 考虑火炬负荷风险的关联联锁回路SIL定级方法[J]. 化工学报, 2021, 72(5): 2754-2762.
[7] 吴月琼, 周魁斌, 黄梦源, 周梦雅. 储罐壁面限制条件下喷射火火焰行为[J]. 化工学报, 2021, 72(5): 2896-2904.
[8] 聂璇, 周魁斌, 吴月琼, 黄梦源, 蒋军成. 气固射流扩散火焰形态研究[J]. 化工学报, 2021, 72(5): 2878-2886.
[9] 屈持, 王海清, 姜巍巍, 孙浩, 张景康. 不完全维修策略下的安全关键设备可靠性评估[J]. 化工学报, 2021, 72(4): 2328-2336.
[10] 田逢时, 董欣欣, 疏学明, 赵金龙. 蛭石粉末及离子溶液改性后膨胀率和灭火有效性分析[J]. 化工学报, 2021, 72(3): 1761-1768.
[11] 李婧怡, 匡卓贤. 对项目整个生命周期PHSER方法的探究与借鉴[J]. 化工学报, 2021, 72(3): 1634-1642.
[12] 沈晓波, 章雪凝, 刘海峰. 高压氢气泄漏相关安全问题研究与进展[J]. 化工学报, 2021, 72(3): 1217-1229.
[13] 刘庆龙, 曲秋影, 赵东风, 刘尚志, 王劲. 基于多源异构数据融合的化工安全风险动态量化评估方法[J]. 化工学报, 2021, 72(3): 1769-1777.
[14] 鲁秋实, 叶光华, 周兴贵. 半间歇釜式反应器安全高效操作的数值优化策略[J]. 化工学报, 2021, 72(2): 975-983.
[15] 王海清, 刘荫, 许小林, 刘美晨. 考虑下游风险的火炬放空系统压力给定值优化计算[J]. 化工学报, 2021, 72(11): 5875-5882.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!