化工学报 ›› 2022, Vol. 73 ›› Issue (12): 5555-5563.DOI: 10.11949/0438-1157.20221339
刘伯峥1,2(), 王静波2, 曾涛2, 殷雅侠1, 郭玉国1()
收稿日期:
2022-10-11
修回日期:
2022-11-28
出版日期:
2022-12-05
发布日期:
2023-01-17
通讯作者:
郭玉国
作者简介:
刘伯峥(1989—),男,博士,高级工程师,liubozheng@iccas.ac.cn
基金资助:
Bozheng LIU1,2(), Jingbo WANG2, Tao ZENG2, Yaxia YIN1, Yuguo GUO1()
Received:
2022-10-11
Revised:
2022-11-28
Online:
2022-12-05
Published:
2023-01-17
Contact:
Yuguo GUO
摘要:
相比新鲜电池,锂离子电池在全生命周期内的安全性研究更值得关注。以寿命初期(BOL)与寿命末期(EOL)两种状态下的大尺寸方型铝壳磷酸铁锂动力电池为研究对象,先分析了BOL和EOL电池在比热容、热导率、材料热稳定性以及直流内阻方面的差异,再详细对比了电池在过放电、过充电、外部短路、加热、针刺、挤压等安全性能的差异。结果表明,相比BOL电池,EOL电池比热容由1.088 J/(g·℃)降低为1.065 J/(g·℃);电池高度、宽度、厚度方向的热导率分别从25.84、21.21、1.05 W/(m·K)降低为22.20、18.44、1.00 W/(m·K);负极材料和电解液的放热峰向低温偏移,121℃附近出现固体电解质界面膜分解放热峰,嵌锂石墨层间化合物、电解液和黏结剂间的反应放热焓由1019 J/g减小为841 J/g。安全性方面,EOL电池过放电产气更多,厚度鼓胀大;过充电产气更多,防爆阀提前7%荷电态开启;外部短路电流无法熔断转接片,电池将持续放电至过放态,产气鼓胀严重;针刺无烟雾释放、防爆阀未开启,安全性大幅提升,加热引发热失控的温度差别不大,其他安全测试项差异较小。研究结果丰富了锂离子电池全生命周期内安全性能的研究,有助于电池单体、模组及系统热失控防护设计。
中图分类号:
刘伯峥, 王静波, 曾涛, 殷雅侠, 郭玉国. 磷酸铁锂电池寿命初期与末期安全性差异[J]. 化工学报, 2022, 73(12): 5555-5563.
Bozheng LIU, Jingbo WANG, Tao ZENG, Yaxia YIN, Yuguo GUO. Safety differences of LiFePO4 batteries at the beginning of life and end of life[J]. CIESC Journal, 2022, 73(12): 5555-5563.
电池状态 | 热导率/(W/(m·K)) | 比热容/ (J/(g·℃)) | ||
---|---|---|---|---|
高度方向 | 宽度方向 | 厚度方向 | ||
BOL | 25.84 | 21.21 | 1.05 | 1.088 |
EOL | 22.20 | 18.44 | 1.00 | 1.065 |
表1 寿命初期和寿命末期电池的热导率和比热容对比
Table 1 Themal conductivity and specific heat capacity contrast of BOL and EOL batteries
电池状态 | 热导率/(W/(m·K)) | 比热容/ (J/(g·℃)) | ||
---|---|---|---|---|
高度方向 | 宽度方向 | 厚度方向 | ||
BOL | 25.84 | 21.21 | 1.05 | 1.088 |
EOL | 22.20 | 18.44 | 1.00 | 1.065 |
电池状态 | 电压变化/mV | 内阻变化/% | 质量变化/g | 厚度变化/% |
---|---|---|---|---|
BOL | -3345 | +12.5 | 0 | +6.6 |
EOL | -3346 | +65.1 | 0 | +28.0 |
表2 寿命初期和末期电池过放电测试后的电压、内阻、质量及厚度变化
Table 2 Voltage, resistance, mass and thickness change of BOL and EOL batteries after overdischarge
电池状态 | 电压变化/mV | 内阻变化/% | 质量变化/g | 厚度变化/% |
---|---|---|---|---|
BOL | -3345 | +12.5 | 0 | +6.6 |
EOL | -3346 | +65.1 | 0 | +28.0 |
电池状态 | 电压变化/mV | 内阻变化/% | 质量变化/g | 厚度变化/% |
---|---|---|---|---|
BOL | +100 | +40.0 | -11.0 | +3.0 |
EOL | +19 | +40.1 | -46.0 | +2.1 |
表3 寿命初期和末期电池过充电测试后的电压、内阻、质量及厚度变化
Table 3 Voltage, resistance, mass and thickness change of BOL and EOL batteries after overcharge
电池状态 | 电压变化/mV | 内阻变化/% | 质量变化/g | 厚度变化/% |
---|---|---|---|---|
BOL | +100 | +40.0 | -11.0 | +3.0 |
EOL | +19 | +40.1 | -46.0 | +2.1 |
电池状态 | 电压变化/mV | 内阻变化/% | 质量变化/g | 厚度变化/% |
---|---|---|---|---|
BOL | -13 | +2655 | 0 | 0.5 |
EOL | -2919 | +30.4 | 0 | 21.1 |
表4 寿命初期和末期电池过外部短路测试后的电压、内阻、质量及厚度变化
Table 4 Voltage, resistance, mass and thickness change of BOL and EOL batteries after external short circuit
电池状态 | 电压变化/mV | 内阻变化/% | 质量变化/g | 厚度变化/% |
---|---|---|---|---|
BOL | -13 | +2655 | 0 | 0.5 |
EOL | -2919 | +30.4 | 0 | 21.1 |
电池状态 | 电压变化/mV | 内阻变化/% | 质量变化/g | 厚度变化/% |
---|---|---|---|---|
BOL | -3350 | +21.4 | -588 | +1.7 |
EOL | -3400 | 无 | -568 | +1.3 |
表5 寿命初期和末期电池过加热测试后的电压、内阻、质量及厚度变化
Table 5 Voltage, resistance, mass and thickness change of BOL and EOL batteries after heating
电池状态 | 电压变化/mV | 内阻变化/% | 质量变化/g | 厚度变化/% |
---|---|---|---|---|
BOL | -3350 | +21.4 | -588 | +1.7 |
EOL | -3400 | 无 | -568 | +1.3 |
电池状态 | 电压变化/mV | 内阻变化/% | 质量变化/g | 厚度变化/% |
---|---|---|---|---|
BOL | -3353 | 945.6 | -572 | +6.5 |
EOL | -3326 | 78.6 | -43.5 | +2.8 |
表6 电池寿命初期和末期针刺测试后的电压、内阻、质量及厚度对比
Table 6 Voltage, resistance, mass and thickness change of BOL and EOL batteries after nail penetration
电池状态 | 电压变化/mV | 内阻变化/% | 质量变化/g | 厚度变化/% |
---|---|---|---|---|
BOL | -3353 | 945.6 | -572 | +6.5 |
EOL | -3326 | 78.6 | -43.5 | +2.8 |
1 | Cai W L, Yan C, Yao Y X, et al. The boundary of lithium plating in graphite electrode for safe lithium-ion batteries[J]. Angewandte Chemie International Edition, 2021, 60(23): 13007-13012. |
2 | Cai Z H, Mendoza S, Goodman J, et al. The influence of cycling, temperature, and electrode gapping on the safety of prismatic lithium-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(16): 160515. |
3 | Chen X X, Yan S S, Tan T H, et al. Supramolecular “flame-retardant” electrolyte enables safe and stable cycling of lithium-ion batteries[J]. Energy Storage Materials, 2022, 45: 182-190. |
4 | Liang C, Jiang L H, Ye S L, et al. Comprehensive analysis on dynamic heat generation of LiNi1/3Co1/3Mn1/3O2 coin cell under overcharge[J]. Journal of the Electrochemical Society, 2019, 166(14): A3369-A3376. |
5 | Liao Z H, Zhang S, Li K, et al. Hazard analysis of thermally abused lithium-ion batteries at different state of charges[J]. Journal of Energy Storage, 2020, 27: 101065. |
6 | Ren D S, Hsu H, Li R H, et al. A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries[J]. eTransportation, 2019, 2: 100034. |
7 | Hou J X, Feng X N, Wang L, et al. Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries[J]. Energy Storage Materials, 2021, 39: 395-402. |
8 | Song Y Z, Liu X, Ren D S, et al. Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretching derived nanoporous non-shrinkage separator for safe lithium-ion batteries[J]. Advanced Materials, 2022, 34(2): 2106335. |
9 | 黄峥, 秦鹏, 石晗, 等. 过热条件下86 Ah磷酸铁锂电池热失控行为研究[J]. 高电压技术, 2022, 48(3): 1185-1191. |
Huang Z, Qin P, Shi H, et al. Study on thermal runaway behavior of 86 Ah lithium iron phosphate battery under overheat condition[J]. High Voltage Engineering, 2022, 48(3): 1185-1191. | |
10 | Mao B B, Liu C Q, Yang K, et al. Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110717. |
11 | 刘洋, 陶风波, 孙磊, 等. 磷酸铁锂储能电池热失控及其内部演变机制研究[J]. 高电压技术, 2021, 47(4): 1333-1343. |
Liu Y, Tao F B, Sun L, et al. Research of thermal runaway and internal evolution mechanism of lithium iron phosphate energy storage battery[J]. High Voltage Engineering, 2021, 47(4): 1333-1343. | |
12 | Liu P J, Li Y Q, Mao B B, et al. Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192: 116949. |
13 | 王怀铷, 孙宜听, 金阳. 磷酸铁锂储能电池簇过充热失控蔓延特性仿真研究[J]. 机械工程学报, 2021, 57(14): 32-39. |
Wang H R, Sun Y T, Jin Y. Simulation study on overcharge thermal runaway propagation of lithium-iron-phosphate energy storage battery clusters[J]. Journal of Mechanical Engineering, 2021, 57(14): 32-39. | |
14 | 卢强. 电动汽车动力电池全生命周期分析与评价[D]. 长春: 吉林大学, 2014. |
Lu Q. Life cycle assessment of electric vehicle power battery[D]. Changchun: Jilin University, 2014. | |
15 | 李怡霞. 动力电池全生命周期研究[D]. 北京: 北京工业大学, 2012. |
Li Y X. Power battery whole life cycle research[D]. Beijing: Beijing University of Technology, 2012. | |
16 | 袁臣虎, 唐静雅, 刘晓明, 等. 锂电池全生命周期充电规划方法研究分析[J]. 电源技术, 2019, 43(10): 1645-1648, 1736. |
Yuan C H, Tang J Y, Liu X M, et al. Research and analysis of charging planning method for lithium battery life cycle[J]. Chinese Journal of Power Sources, 2019, 43(10): 1645-1648, 1736. | |
17 | 樊亚平. 锂离子电池全生命周期衰减机制研究[D]. 上海: 上海应用技术大学, 2020. |
Fan Y P. Research on the lithium ion battery degradation mechanism among the whole life cycle[D]. Shanghai: Shanghai Institute of Technology, 2020. | |
18 | Preger Y, Torres-Castro L, Rauhala T, et al. Perspective—on the safety of aged lithium-ion batteries[J]. Journal of the Electrochemical Society, 2022, 169(3): 030507. |
19 | Feng L, Jiang L H, Liu J L, et al. Dynamic overcharge investigations of lithium ion batteries with different state of health[J]. Journal of Power Sources, 2021, 507: 230262. |
20 | 潘帅. 动力锂离子电池全生命周期内电热特性的演变规律研究[D]. 北京: 北京工业大学, 2020. |
Pan S. Study on evolution of electro-thermal characteristics of power lithium-ion battery during its entire life[D]. Beijing: Beijing University of Technology, 2020. | |
21 | 李硕硕. 全生命周期的锂离子动力电池的安全性能研究[D]. 天津: 天津理工大学, 2019. |
Li S S. Study on the safety performance of lithium ion power batteries in whole life cycle[D]. Tianjin: Tianjin University of Technology, 2019. | |
22 | 任东生, 冯旭宁, 韩雪冰, 等. 锂离子电池全生命周期安全性演变研究进展[J]. 储能科学与技术, 2018, 7(6): 957-966. |
Ren D S, Feng X N, Han X B, et al. Recent progress on evolution of safety performance of lithium-ion battery during aging process[J]. Energy Storage Science and Technology, 2018, 7(6): 957-966. | |
23 | 王芳, 樊彬, 刘仕强, 等. 磷酸铁锂动力电池常规循环过程中安全特性[J]. 汽车安全与节能学报, 2014, 5(2): 180-184. |
Wang F, Fan B, Liu S Q, et al. Safety behaviors of LiFePO4 power battery during normal cycles[J]. Journal of Automotive Safety and Energy, 2014, 5(2): 180-184. | |
24 | Börner M, Friesen A, Grützke M, et al. Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries[J]. Journal of Power Sources, 2017, 342: 382-392. |
25 | Hildebrand S, Rheinfeld A, Friesen A, et al. Thermal analysis of LiNi0.4Co0.2Mn0.4O2/mesocarbon microbeads cells and electrodes: state-of-charge and state-of-health influences on reaction kinetics[J]. Journal of the Electrochemical Society, 2018, 165(2): A104-A117. |
26 | Waldmann T, Quinn J B, Richter K, et al. Electrochemical, post-mortem, and ARC analysis of Li-ion cell safety in second-life applications[J]. Journal of the Electrochemical Society, 2017, 164(13): A3154-A3162. |
27 | Friesen A, Hildebrand S, Horsthemke F, et al. Al2O3 coating on anode surface in lithium ion batteries: impact on low temperature cycling and safety behavior[J]. Journal of Power Sources, 2017, 363: 70-77. |
28 | Waldmann T, Wohlfahrt-Mehrens M. Effects of rest time after Li plating on safety behavior—arc tests with commercial high-energy 18650 Li-ion cells[J]. Electrochimica Acta, 2017, 230: 454-460. |
29 | 盛雷, 徐海峰, 苏林, 等. 车用磷酸亚铁锂电池的热特性与热物性研究[J]. 汽车工程, 2019, 41(10): 1152-1157, 1171. |
Sheng L, Xu H F, Su L, et al. A study on thermal characteristics and thermal properties of vehicular lithium Ferro phosphate traction battery[J]. Automotive Engineering, 2019, 41(10): 1152-1157, 1171. | |
30 | 林坚生, 宋文吉, 高日新, 等. LiFePO4动力电池热物性测定及温升特性研究[J]. 电源技术, 2015, 39(4): 739-742. |
Lin J S, Song W J, Gao R X, et al. Study on thermo-physical property measurement and temperature rise characteristic of LiFePO4 power battery[J]. Chinese Journal of Power Sources, 2015, 39(4): 739-742. | |
31 | 崔喜风, 张红亮, 龚阳, 等. 方形硬壳锂离子动力电池的热物性参数[J]. 中国有色金属学报, 2019, 29(12): 2747-2756. |
Cui X F, Zhang H L, Gong Y, et al. Thermal properties of hard cased lithium-ion power battery[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(12): 2747-2756. | |
32 | 程夕明, 唐宇, 王寿群. 锂离子电池热物性参数测量方法综述[J]. 机械工程学报, 2019, 55(14): 140-150. |
Cheng X M, Tang Y, Wang S Q. Thermophysical parameter measurements for lithium-ion batteries: a review[J]. Journal of Mechanical Engineering, 2019, 55(14): 140-150. | |
33 | Vertiz G, Oyarbide M, Macicior H, et al. Thermal characterization of large size lithium-ion pouch cell based on 1D electro-thermal model[J]. Journal of Power Sources, 2014, 272: 476-484. |
34 | Bazinski S J, Wang X. Experimental study on the influence of temperature and state-of-charge on the thermophysical properties of an LFP pouch cell[J]. Journal of Power Sources, 2015, 293: 283-291. |
35 | Hou J B, Yang M, Wang D Y, et al. Fundamentals and challenges of lithium ion batteries at temperatures between -40 and 60℃[J]. Advanced Energy Materials, 2020, 10(18): 1904152. |
36 | Tsukasaki H, Fukuda W, Morimoto H, et al. Thermal behavior and microstructures of cathodes for liquid electrolyte-based lithium batteries[J]. Scientific Reports, 2018, 8: 15613. |
37 | 王康康, 高飞, 杨凯, 等. 不同健康状态等级的储能磷酸铁锂电池熵变系数及放电产热研究[J]. 高电压技术, 2017, 43(7): 2241-2248. |
Wang K K, Gao F, Yang K, et al. Research of LiFePO4/C energy storage batteriesê entropy coefficient and discharge heat generation based on the state of health[J]. High Voltage Engineering, 2017, 43(7): 2241-2248. | |
38 | Guo R, Lu L G, Ouyang M G, et al. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries[J]. Scientific Reports, 2016, 6: 30248. |
39 | Ouyang D X, Weng J W, Liu J H, et al. Influence of current rate on the degradation behavior of lithium-ion battery under overcharge condition[J]. Journal of the Electrochemical Society, 2019, 166(12): A2697-A2706. |
40 | 李宇, 杜建华, 杨世治, 等. 圆柱形磷酸铁锂电池针刺热失控实验研究[J]. 储能科学与技术, 2019, 8(3): 559-566. |
Li Y, Du J H, Yang S Z, et al. Experimental researches on thermal runaway in cylindrical LiFePO4 batteries during nail penetration[J]. Energy Storage Science and Technology, 2019, 8(3): 559-566. |
[1] | 李珍宝, 李超, 王虎, 王绍瑞, 黎泉. MPP抑制铝镁合金粉尘爆炸微观机理研究[J]. 化工学报, 2023, 74(8): 3608-3614. |
[2] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[3] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[4] | 肖忠良, 尹碧露, 宋刘斌, 匡尹杰, 赵亭亭, 刘成, 袁荣耀. 废旧锂离子电池回收工艺研究进展及其安全风险分析[J]. 化工学报, 2023, 74(4): 1446-1456. |
[5] | 武子超, 汪志雷, 李荣业, 李可昕, 华敏, 潘旭海, 王三明, 蒋军成. 点火方式对欠膨胀氢气射流爆炸超压影响规律研究[J]. 化工学报, 2023, 74(3): 1409-1418. |
[6] | 杜江龙, 杨雯棋, 黄凯, 练成, 刘洪来. 复合相变材料/空冷复合式锂离子电池模块散热性能[J]. 化工学报, 2023, 74(2): 674-689. |
[7] | 廖珊珊, 张少刚, 陶骏骏, 刘家豪, 汪金辉. 竖直射流火撞击障碍管道数值模拟分析[J]. 化工学报, 2022, 73(9): 4226-4234. |
[8] | 杨克, 王辰升, 纪虹, 郑凯, 邢志祥, 毕海普, 蒋军成. 聚多巴胺包覆混合粉体抑制甲烷爆炸的实验研究[J]. 化工学报, 2022, 73(9): 4245-4254. |
[9] | 王燕, 何佳, 杨晶晶, 林晨迪, 纪文涛. 草酸盐和碳酸氢盐抑制聚乙烯粉尘爆炸特性[J]. 化工学报, 2022, 73(9): 4207-4216. |
[10] | 张经纬, 周弋惟, 陈卓, 徐建鸿. 微反应器内的有机合成前沿进展[J]. 化工学报, 2022, 73(8): 3472-3482. |
[11] | 周梦雅, 周魁斌, 王朝, 黄梦源, 王一凡, 蒋军成. 坑道限制条件下水平丙烷喷射火火焰行为研究[J]. 化工学报, 2022, 73(2): 960-971. |
[12] | 张凤丽, 潘辉, 王金江. 基于多元状态估计的热交换器多参数关联预警方法[J]. 化工学报, 2022, 73(2): 814-826. |
[13] | 雷明川, 喻健良, 闫兴清, 吕先舒, 侯玉洁, 詹潇兵. 惰性气体对氢气/空气爆轰传播的抑制作用[J]. 化工学报, 2022, 73(10): 4754-4761. |
[14] | 纪文涛, 李璐, 李忠, 何佳, 杨晶晶, 王燕. 聚磷酸铵抑制PMMA粉尘爆炸特性研究[J]. 化工学报, 2022, 73(1): 461-469. |
[15] | 李云浩, 蒋军成, 喻源, 王志荣, 张庆武. 穿孔与热辐射耦合作用下固定拱顶钢储罐的失效机理[J]. 化工学报, 2021, 72(8): 4433-4443. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 469
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 807
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||