1 |
Joseph G. Combustible dusts: a serious industrial hazard[J]. Journal of Hazardous Materials, 2007, 142(3): 589-591.
|
2 |
Copelli S, Raboni M, Ragazzi M, et al. Variation of the explosion risk in a hybrid collector during revamping operations[J]. International Journal of Safety and Security Engineering, 2017, 7(2): 113-125.
|
3 |
喻健良, 闫兴清. 高静态动作压力下粉尘爆炸泄放标准的可靠性[J]. 东北大学学报(自然科学版), 2015, 36(9): 1316-1320.
|
|
Yu J L, Yan X Q. Reliability of dust explosion venting standards under elevated static activation overpressures[J]. Journal of Northeastern University (Natural Science), 2015, 36(9): 1316-1320.
|
4 |
胡东涛, 陈曦. 工业粉尘惰化抑爆技术研究现状分析[J]. 工业安全与环保, 2016, 42(12): 10-14.
|
|
Hu D T, Chen X. Review of inerting explosion suppression research of industrial dust[J]. Industrial Safety and Environmental Protection, 2016, 42(12): 10-14.
|
5 |
Du B, Huang W X, Kuai N S, et al. Experimental investigation on inerting mechanism of dust explosion[J]. Procedia Engineering, 2012, 43: 338-342.
|
6 |
Jiang H P, Bi M S, Li B, et al. Inhibition evaluation of ABC powder in aluminum dust explosion[J]. Journal of Hazardous Materials, 2019, 361: 273-282.
|
7 |
Amyotte P R. Solid inertants and their use in dust explosion prevention and mitigation[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2/3): 161-173.
|
8 |
Dounia O, Vermorel O, Poinsot T. Theoretical analysis and simulation of methane/air flame inhibition by sodium bicarbonate particles[J]. Combustion and Flame, 2018, 193: 313-326.
|
9 |
Lei B W, He B B, Xiao B W, et al. Comparative study of single inert gas in confined space inhibiting open flame coal combustion[J]. Fuel, 2020, 265: 116976.
|
10 |
Shen G D, Wang Z Q, Wu J L, et al. Combustion characteristics of low-rank coal chars in O2/CO2, O2/N2 and O2/Ar by TGA[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1066-1073.
|
11 |
贾宝山, 温海燕, 梁运涛, 等. 煤矿巷道内N2及CO2抑制瓦斯爆炸的机理特性[J]. 煤炭学报, 2013, 38(3): 361-366.
|
|
Jia B S, Wen H Y, Liang Y T, et al. Mechanism characteristics of CO2 and N2 inhibiting methane explosions in coal mine roadways[J]. Journal of China Coal Society, 2013, 38(3): 361-366.
|
12 |
邵昊, 蒋曙光, 吴征艳, 等. 二氧化碳和氮气对煤自燃性能影响的对比试验研究[J]. 煤炭学报, 2014, 39(11): 2244-2249.
|
|
Shao H, Jiang S G, Wu Z Y, et al. Comparative research on the influence of dioxide carbon and nitrogen on performance of coal spontaneous combustion[J]. Journal of China Coal Society, 2014, 39(11): 2244-2249.
|
13 |
Razus D, Movileanu C, Brinzea V, et al. Closed vessel combustion of propylene-air mixtures in the presence of exhaust gas[J]. Fuel, 2007, 86(12/13): 1865-1872.
|
14 |
Mitu M, Prodan M, Giurcan V, et al. Influence of inert gas addition on propagation indices of methane-air deflagrations[J]. Process Safety and Environmental Protection, 2016, 102: 513-522.
|
15 |
Chen Z, Qin X, Xu B, et al. Studies of radiation absorption on flame speed and flammability limit of CO2 diluted methane flames at elevated pressures[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2693-2700.
|
16 |
Razus D, Movileanua C, Oancea D. The rate of pressure rise of gaseous propylene-air explosions in spherical and cylindrical enclosures[J]. Journal of Hazardous Materials, 2007, 139(1): 1-8.
|
17 |
Zhang Q W, Yu Y, Li Y H, et al. Coupling effects of venting and inerting on explosions in interconnected vessels[J]. Journal of Loss Prevention in the Process Industries, 2020, 65: 104132.
|
18 |
European Committee for Standardization. Dust explosion venting protective systems: EN14491[S]. London: British Standards Institution,2012.
|
19 |
National Fire Protection Association. Standard on Explosion Protection by Deflagration Venting: [S]. 2016.
|
20 |
王远丽, 王勤辉, 李开坤, 等. 焦载体下CH4及CO2气氛对低阶煤流化床热解特性的影响[J]. 热力发电, 2020, 49(6): 7-14.
|
|
Wang Y L, Wang Q H, Li K K, et al. Effect of CH4 and CO2 atmosphere under coke carrier on pyrolysis characteristics of low-order coal fluidized bed[J]. Thermal Power Generation, 2020, 49(6): 7-14.
|
21 |
Zeng W, Ma H, Liang Y T, et al. Experimental and modeling study on effects of N2 and CO2 on ignition characteristics of methane/air mixture[J]. Journal of Advanced Research, 2015, 6(2): 189-201.
|
22 |
Di Benedetto A, Di Sarli V, Salzano E, et al. Explosion behavior of CH4/O2/N2/CO2 and H2/O2/N2/CO2 mixtures[J]. International Journal of Hydrogen Energy, 2009, 34(16): 6970-6978.
|
23 |
Li H Y, Yue Y H, Miao C X, et al. Dehydrogenation of ethylbenzene and propane over Ga2O3-ZrO2 catalysts in the presence of CO2[J]. Catalysis Communications, 2007, 8(9): 1317-1322.
|
24 |
Li G, Yuan C M, Fu Y, et al. Inerting of magnesium dust cloud with Ar, N2 and CO2[J]. Journal of Hazardous Materials, 2009, 170(1): 180-183.
|
25 |
Zheng K, Yang X F, Yu M G, et al. Effect of N2 and CO2 on explosion behavior of syngas/air mixtures in a closed duct[J]. International Journal of Hydrogen Energy, 2019, 44(51): 28044-28055.
|
26 |
Xiang L K, Chu H Q, Ren F, et al. Numerical analysis of the effect of CO2 on combustion characteristics of laminar premixed methane/air flames[J]. Journal of the Energy Institute, 2019, 92(5): 1487-1501.
|
27 |
Chen Z Y, Tang C L, Fu J, et al. Experimental and numerical investigation on diluted DME flames: thermal and chemical kinetic effects on laminar flame speeds[J]. Fuel, 2012, 102: 567-573.
|
28 |
Xie M K, Fu J Q, Zhang Y X, et al. Numerical analysis on the effects of CO2 dilution on the laminar burning velocity of premixed methane/air flame with elevated initial temperature and pressure[J]. Fuel, 2020, 264: 116858.
|
29 |
Ji W T, Yan X Q, Sun H L, et al. Comparative analysis of the explosibility of several different hybrid mixtures[J]. Powder Technology, 2018, 325: 42-48.
|
30 |
Yan X Q, Yu J L. Dust explosion venting of small vessels at the elevated static activation overpressure[J]. Powder Technology, 2014, 261: 250-256.
|
31 |
Yang J, Li Y H, Yu Y, et al. Experimental investigation of the inerting effect of CO2 on explosion characteristics of micron-size Acrylate Copolymer dust[J]. Journal of Loss Prevention in the Process Industries, 2019, 62: 103979.
|