化工学报 ›› 2021, Vol. 72 ›› Issue (8): 3958-3967.DOI: 10.11949/0438-1157.20210079
收稿日期:
2021-01-12
修回日期:
2021-05-09
出版日期:
2021-08-05
发布日期:
2021-08-05
通讯作者:
曹景沛
作者简介:
冯晓博 (1988—), 男, 博士, 基金资助:
Xiaobo FENG(),Tianlong LIU,Xiaoyan ZHAO,Jingpei CAO()
Received:
2021-01-12
Revised:
2021-05-09
Online:
2021-08-05
Published:
2021-08-05
Contact:
Jingpei CAO
摘要:
作为一种新型的煤制乙醇工艺,合成气经二甲醚羰基化合成乙酸甲酯,再进一步加氢制备无水乙醇的工艺路径备受市场关注。该工艺反应条件温和,所用分子筛和铜基催化剂价廉且制备方法简单。综述了二甲醚羰基化分子筛催化剂、乙酸甲酯加氢铜基催化剂的研究进展以及两者不同的耦合方式对合成气-二甲醚一步法制备乙醇反应路径的影响。重点介绍了分子筛催化二甲醚羰基化反应和失活机理以及分子筛催化剂设计调控的研究进展。该新型煤制乙醇技术为我国煤炭资源清洁高附加值利用提供了一条重要途径。
中图分类号:
冯晓博, 刘天龙, 赵小燕, 曹景沛. 合成气与二甲醚为原料直接制乙醇催化反应研究进展[J]. 化工学报, 2021, 72(8): 3958-3967.
Xiaobo FENG, Tianlong LIU, Xiaoyan ZHAO, Jingpei CAO. Advance in ethanol synthesis from syngas via carbonylation of dimethyl ether and hydrogenation of methyl acetate[J]. CIESC Journal, 2021, 72(8): 3958-3967.
催化剂(Si/Al) | 反应条件 | DME转化率/% | 产物生成速率/(g/(gcat·h)) | 文献 |
---|---|---|---|---|
HMOR (10) | 190℃, 1.0 MPa, 93% CO/2% DME/5% Ar | — | 0.3 | [ |
HEU-12(10) | 220℃, 1.0 MPa, 4.1% CO/92.8% DME/3.0% Ar | 16 | 0.043 | [ |
HSSZ-13(9.2) | 165℃ 0.1 MPa, 2% DME, 3% He/5% Ar/95% CO, GHSV = 27000 ml/(g·h) | — | 0.009① | [ |
HSUZ-4(5.1) | 220℃, 2.0 MPa, 5% DME/50% CO/2.5Ar, GHSV = 1170 ml/(g·h) | 22 | 0.053 | [ |
HZSM-57(17.4) | 10 | 0.025 | [ | |
1.74% Cu/HMOR(9) | 210℃, 1.8 MPa, 38% CO/2% DME/3% N2 | 100 | 0.62 | [ |
1.30% Ni/HMMOR | 90 | 0.4 | [ | |
1.36% Co/HMOR | 100 | 0.47 | [ | |
1.67% Zn/HMOR | 81 | 0.35 | [ | |
1.64% Ag/HMOR | 42 | 0.22 | [ | |
3.2% Cu/HMOR(7) | 210℃, 1 MPa CO, 48 kPa DME, 50.0% CO/2.4% DME/2.9% H2/44.7% N2, GHSV=2100 ml/(g·h) | 76 | 0.2 | [ |
2% Cu-1% Zn/HMOR | 70 | 0.18 | [ | |
1.5%Cu-1.5%Zn/HMOR | 92 | 0.24 | [ | |
0.6%Cu-2.5Zn/HMOR | 77 | 0.2 | [ | |
HMOR (13.5) | 210℃, 1.0 MPa, 5% DME/50% CO/2.5% N2/42.5% He,GHSV = 1350 ml/ (g·h) | 35 | 0.24 | [ |
HMOR | 200℃, 2.0 MPa, 5% DME/35% CO/60% H2, GHSV = 1500 ml/(g·h) | 40 | 0.3 | [ |
HMOR(5.5) | 210℃, 1.5 MPa, 3% DME/95.5% CO/1.5% N2, GHSV = 5280 ml/(g·h) | 55 | 0.87 | [ |
HMOR (7.7) | 200℃, 1% DME/49% CO, 1.5 MPa, GHSV=6000 ml/(g·h) | 65 | 0.35 | [ |
HMOR (10.7) | 200℃, 1.5 MPa, 10% DME/ 50% CO/40% N2, GHSV= 2400 ml/(g·h) | 45 | 1.08 | [ |
HMOR (12.5) | 190℃, 1.5 MPa, 2.0% DME/98.0% CO, GHSV= 2000 ml/(g·h) | 92 | 0.37 | [ |
0.9% Fe/HMOR | 200℃, 3.0 MPa, 5% DME/ 35% CO/ 60% H2 | 82 | 0.19 | [ |
1.8% Fe/HMOR | 76 | 0.18 | [ | |
3.6% Fe/HMOR | 40 | 0.095 | [ | |
Ce/HMOR (0) | 200℃, 1.5 MPa, 1% DME/49% CO, GHSV= 2000 ml/(g·h) | 47 | 0.16 | [ |
Ce/HMOR (1.1) | 52 | 0.17 | [ | |
Ce/HMOR (2.1) | 60 | 0.2 | [ | |
Ce/HMOR (4.1) | 42 | 0.14 | [ | |
HMOR+TEAOH (8.2) | 200℃, 1.5 MPa, 1% DME/49% CO,GHSV= 2000 ml/(g·h) | 39 | 0.13 | [ |
HMOR+TEAOH (10.2) | 47 | 0.16 | [ | |
HMOR+TEAOH (11.8) | 42 | 0.14 | [ | |
HMOR+HMI (11.8) | 62 | 0.20 | [ | |
FER+PyR (13.2) | 200℃, 0.275 MPa, 51.1% DME/48.9% CO/Ar, GHSV= 3600 ml/(g·h) | — | 1.3① | [ |
FER+Pyr+TMA (17.0) | — | 0.8① | [ | |
FER+HMI+TMA(17.2) | — | < 0.1① | [ | |
Py/HMOR (6.4) | 200℃, 1.0 MPa, 5% DME/50% CO/2.5% N2/42.5% He, GHSV= 1250 ml/(g·h) | 35 | 0.22 | [ |
表1 二甲醚羰基化分子筛催化剂性能比较
Table 1 The comparison of DME carbonylation over zeolite
催化剂(Si/Al) | 反应条件 | DME转化率/% | 产物生成速率/(g/(gcat·h)) | 文献 |
---|---|---|---|---|
HMOR (10) | 190℃, 1.0 MPa, 93% CO/2% DME/5% Ar | — | 0.3 | [ |
HEU-12(10) | 220℃, 1.0 MPa, 4.1% CO/92.8% DME/3.0% Ar | 16 | 0.043 | [ |
HSSZ-13(9.2) | 165℃ 0.1 MPa, 2% DME, 3% He/5% Ar/95% CO, GHSV = 27000 ml/(g·h) | — | 0.009① | [ |
HSUZ-4(5.1) | 220℃, 2.0 MPa, 5% DME/50% CO/2.5Ar, GHSV = 1170 ml/(g·h) | 22 | 0.053 | [ |
HZSM-57(17.4) | 10 | 0.025 | [ | |
1.74% Cu/HMOR(9) | 210℃, 1.8 MPa, 38% CO/2% DME/3% N2 | 100 | 0.62 | [ |
1.30% Ni/HMMOR | 90 | 0.4 | [ | |
1.36% Co/HMOR | 100 | 0.47 | [ | |
1.67% Zn/HMOR | 81 | 0.35 | [ | |
1.64% Ag/HMOR | 42 | 0.22 | [ | |
3.2% Cu/HMOR(7) | 210℃, 1 MPa CO, 48 kPa DME, 50.0% CO/2.4% DME/2.9% H2/44.7% N2, GHSV=2100 ml/(g·h) | 76 | 0.2 | [ |
2% Cu-1% Zn/HMOR | 70 | 0.18 | [ | |
1.5%Cu-1.5%Zn/HMOR | 92 | 0.24 | [ | |
0.6%Cu-2.5Zn/HMOR | 77 | 0.2 | [ | |
HMOR (13.5) | 210℃, 1.0 MPa, 5% DME/50% CO/2.5% N2/42.5% He,GHSV = 1350 ml/ (g·h) | 35 | 0.24 | [ |
HMOR | 200℃, 2.0 MPa, 5% DME/35% CO/60% H2, GHSV = 1500 ml/(g·h) | 40 | 0.3 | [ |
HMOR(5.5) | 210℃, 1.5 MPa, 3% DME/95.5% CO/1.5% N2, GHSV = 5280 ml/(g·h) | 55 | 0.87 | [ |
HMOR (7.7) | 200℃, 1% DME/49% CO, 1.5 MPa, GHSV=6000 ml/(g·h) | 65 | 0.35 | [ |
HMOR (10.7) | 200℃, 1.5 MPa, 10% DME/ 50% CO/40% N2, GHSV= 2400 ml/(g·h) | 45 | 1.08 | [ |
HMOR (12.5) | 190℃, 1.5 MPa, 2.0% DME/98.0% CO, GHSV= 2000 ml/(g·h) | 92 | 0.37 | [ |
0.9% Fe/HMOR | 200℃, 3.0 MPa, 5% DME/ 35% CO/ 60% H2 | 82 | 0.19 | [ |
1.8% Fe/HMOR | 76 | 0.18 | [ | |
3.6% Fe/HMOR | 40 | 0.095 | [ | |
Ce/HMOR (0) | 200℃, 1.5 MPa, 1% DME/49% CO, GHSV= 2000 ml/(g·h) | 47 | 0.16 | [ |
Ce/HMOR (1.1) | 52 | 0.17 | [ | |
Ce/HMOR (2.1) | 60 | 0.2 | [ | |
Ce/HMOR (4.1) | 42 | 0.14 | [ | |
HMOR+TEAOH (8.2) | 200℃, 1.5 MPa, 1% DME/49% CO,GHSV= 2000 ml/(g·h) | 39 | 0.13 | [ |
HMOR+TEAOH (10.2) | 47 | 0.16 | [ | |
HMOR+TEAOH (11.8) | 42 | 0.14 | [ | |
HMOR+HMI (11.8) | 62 | 0.20 | [ | |
FER+PyR (13.2) | 200℃, 0.275 MPa, 51.1% DME/48.9% CO/Ar, GHSV= 3600 ml/(g·h) | — | 1.3① | [ |
FER+Pyr+TMA (17.0) | — | 0.8① | [ | |
FER+HMI+TMA(17.2) | — | < 0.1① | [ | |
Py/HMOR (6.4) | 200℃, 1.0 MPa, 5% DME/50% CO/2.5% N2/42.5% He, GHSV= 1250 ml/(g·h) | 35 | 0.22 | [ |
1 | 孟迎, 白晓宇, 李凯, 等. 我国乙醇生产技术及煤制乙醇技术研究进展[J]. 煤炭与化工, 2017, 40(8): 21-23. |
Meng Y, Bai X Y, Li K, et al. Ethanol production technologies and research progress of the coal chemical industry to ethanol technology in China[J]. Coal and Chemical Industry, 2017, 40(8): 21-23. | |
2 | Subramani V, Gangwal S K. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol[J]. Energy & Fuels, 2008, 22(2): 814-839. |
3 | Choi Y, Liu P. Mechanism of ethanol synthesis from syngas on Rh(111)[J]. Journal of the American Chemical Society, 2009, 131(36): 13054-13061. |
4 | Mei D H, Rousseau R, Kathmann S M, et al. Ethanol synthesis from syngas over Rh-based/SiO2 catalysts: a combined experimental and theoretical modeling study[J]. Journal of Catalysis, 2010, 271(2): 325-342. |
5 | Lopez L, Montes V, Kušar H, et al. Syngas conversion to ethanol over a mesoporous Cu/MCM-41 catalyst: effect of K and Fe promoters[J]. Applied Catalysis A: General, 2016, 526: 77-83. |
6 | Portillo C M A, Villanueva P A L, Vidal-Barrero F, et al. Effects of methanol co-feeding in ethanol synthesis from syngas using alkali-doped MoS2 catalysts[J]. Fuel Processing Technology, 2015, 134: 270-274. |
7 | Forster D. On the mechanism of a rhodium-complex-catalyzed carbonylation of methanol to acetic acid[J]. Journal of the American Chemical Society, 1976, 98(3): 846-848. |
8 | Zhao S, Yue H R, Zhao Y J, et al. Chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate on Cu/SiO2: enhanced stability with boron dopant[J]. Journal of Catalysis, 2013, 297: 142-150. |
9 | 吕鹏, 徐钉, 申东明, 等. 串联催化剂在二甲醚与合成气制备乙醇反应中的性能研究[J]. 应用化工, 2017, 46(7): 1285-1289. |
Lyu P, Xu D, Shen D M, et al. Research of ethanol synthesis from dimethyl ether and syngas on tandem catalyst[J]. Applied Chemical Industry, 2017, 46(7): 1285-1289. | |
10 | Feng S Q, Lin X S, Song X G, et al. The role of H2 on the stability of the single-metal-site Ir1/AC catalyst for heterogeneous methanol carbonylation[J]. Journal of Catalysis, 2020, 381: 193-203. |
11 | Yashima T, Orikasa Y, Takahashi N, et al. Vapor phase carbonylation of methanol over RhY zeolite[J]. Journal of Catalysis, 1979, 59(1): 53-60. |
12 | Feng P, Fu X B. Direct vapor-phase carbonylation of methanol at atmospheric pressure on activated carbon-supported NiCl2-CuCl2 catalysts[J]. Catalysis Today, 2004, 93/94/95: 451-455. |
13 | Zhan E S, Xiong Z P, Shen W J. Dimethyl ether carbonylation over zeolites[J]. Journal of Energy Chemistry, 2019, 36: 51-63. |
14 | 王辉, 吴志连, 邰志军, 等. 合成气经二甲醚羰基化及乙酸甲酯加氢制无水乙醇的研究进展[J]. 化工进展, 2019, 38(10): 4497-4503. |
Wang H, Wu Z L, Tai Z J, et al. Advances in synthesis of anhydrous ethanol from syngas via carbonylation of dimethyl ether and hydrogenation of methyl acetate[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4497-4503. | |
15 | Cheung P, Bhan A, Sunley G J, et al. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites[J]. Angewandte Chemie International Edition, 2006, 45(10): 1617-1620. |
16 | Bhan A, Allian A D, Sunley G J, et al. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls[J]. Journal of the American Chemical Society, 2007, 129(16): 4919-4924. |
17 | Boronat M, Martínez-Sánchez C, Law D, et al. Enzyme-like specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO[J]. Journal of the American Chemical Society, 2008, 130(48): 16316-16323. |
18 | Rasmussen D B, Christensen J M, Temel B, et al. Ketene as a reaction intermediate in the carbonylation of dimethyl ether to methyl acetate over mordenite[J]. Angewandte Chemie International Edition, 2015, 54(25): 7261-7264. |
19 | He T, Ren P, Liu X, et al. Direct observation of DME carbonylation in the different channels of H-MOR zeolite by continuous-flow solid-state NMR spectroscopy[J]. Chemical Communications (Cambridge, England), 2015, 51(94): 16868-16870. |
20 | Cheung P, Bhan A, Sunley G J, et al. Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites[J]. Journal of Catalysis, 2007, 245(1): 110-123. |
21 | Reule A A C, Sawada J A, Semagina N. Effect of selective 4-membered ring dealumination on mordenite-catalyzed dimethyl ether carbonylation[J]. Journal of Catalysis, 2017, 349: 98-109. |
22 | Cheng Z Z, Huang S Y, Li Y, et al. Deactivation kinetics for the carbonylation of dimethyl ether to methyl acetate on H-MOR[J]. Industrial & Engineering Chemistry Research, 2017, 56(46): 13618-13627. |
23 | Zhou H, Zhu W L, Shi L, et al. In situ DRIFT study of dimethyl ether carbonylation to methyl acetate on H-mordenite[J]. Journal of Molecular Catalysis A: Chemical, 2016, 417: 1-9. |
24 | Liu Z Q, Yi X F, Wang G R, et al. Roles of 8-ring and 12-ring channels in mordenite for carbonylation reaction: from the perspective of molecular adsorption and diffusion[J]. Journal of Catalysis, 2019, 369: 335-344. |
25 | Feng X B, Yao J, Li H J, et al. A brand new zeolite catalyst for carbonylation reaction[J]. Chemical Communications, 2019, 55(8): 1048-1051. |
26 | Lusardi M, Chen T T, Kale M, et al. Carbonylation of dimethyl ether to methyl acetate over SSZ-13[J]. ACS Catalysis, 2020, 10(1): 842-851. |
27 | Xiong Z P, Zhan E S, Li M R, et al. DME carbonylation over a HSUZ-4 zeolite[J]. Chemical Communications, 2020, 56(23): 3401-3404. |
28 | Primo A, Garcia H. Zeolites as catalysts in oil refining[J]. Chemical Society Reviews, 2014, 43(22): 7548-7561. |
29 | Zhang Q, Yu J H, Corma A. Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities[J]. Advanced Materials, 2020, 32(44): 2002927. |
30 | Dusselier M, Davis M K. Small-pore zeolites: synthesis and catalysis[J]. ACS Catal., 2018, 118(11): 5265-5329. |
31 | Wang S R, Guo W W, Zhu L J, et al. Methyl acetate synthesis from dimethyl ether carbonylation over mordenite modified by cation exchange[J]. The Journal of Physical Chemistry C, 2015, 119(1): 524-533. |
32 | Blasco T, Boronat M, Concepción P, et al. Carbonylation of methanol on metal-acid zeolites: evidence for a mechanism involving a multisite active center[J]. Angewandte Chemie International Edition, 2007, 46(21): 3938-3941. |
33 | Li Y, Huang S Y, Cheng Z Z, et al. Synergy between Cu and Brønsted acid sites in carbonylation of dimethyl ether over Cu/H-MOR[J]. Journal of Catalysis, 2018, 365: 440-449. |
34 | Reule A A C, Semagina N. Zinc hinders deactivation of copper-mordenite: dimethyl ether carbonylation[J]. ACS Catalysis, 2016, 6(8): 4972-4975. |
35 | 冯琦瑶, 邢爱华, 张新锋, 等. ZSM-5分子筛在甲醇转化制烯烃领域应用的研究进展[J]. 工业催化, 2016, 24(1): 15-23. |
Feng Q Y, Xing A H, Zhang X F, et al. Research progress in the application of ZSM-5 molecular sieves in the methanol-to-olefin field[J]. Industrial Catalysis, 2016, 24(1): 15-23. | |
36 | 刘备, 鲁思武, 刘恩周, 等. 小晶粒HZSM-5分子筛合成及甲醇制芳烃催化性能[J]. 化学工程, 2018, 46(8): 11-15. |
Liu B, Lu S W, Liu E Z, et al. Synthesis of small crystal HZSM-5 zeolite and catalytic performance in methanol to aromatics[J]. Chemical Engineering (China), 2018, 46(8): 11-15. | |
37 | Zhang G Q, Bai T, Chen T F, et al. Conversion of methanol to light aromatics on Zn-modified nano-HZSM-5 zeolite catalysts[J]. Industrial & Engineering Chemistry Research, 2014, 53(39): 14932-14940. |
38 | Ma M, Huang X M, Zhan E S, et al. Synthesis of mordenite nanosheets with shortened channel lengths and enhanced catalytic activity[J]. Journal of Materials Chemistry A, 2017, 5(19): 8887-8891. |
39 | Yuan Y Y, Wang L Y, Liu H C, et al. Facile preparation of nanocrystal-assembled hierarchical mordenite zeolites with remarkable catalytic performance[J]. Chinese Journal of Catalysis, 2015, 36(11): 1910-1919. |
40 | Liu Y H, Zhao N, Xian H, et al. Facilely synthesized H-mordenite nanosheet assembly for carbonylation of dimethyl ether[J]. ACS Applied Materials & Interfaces, 2015, 7(16): 8398-8403. |
41 | He P, Li Y, Cai K, et al. Nano-assembled mordenite zeolite with tunable morphology for carbonylation of dimethyl ether[J]. ACS Applied Nano Materials, 2020, 3(7): 6460-6468. |
42 | Sheng H B, Qian W X, Zhang H T, et al. Synthesis of hierarchical porous H-mordenite zeolite for carbonylation of dimethyl ether[J]. Microporous and Mesoporous Materials, 2020, 295: 109950. |
43 | Wang X S, Li R J, Yu C C, et al. Enhancing the dimethyl ether carbonylation performance over mordenite catalysts by simple alkaline treatment[J]. Fuel, 2019, 239: 794-803. |
44 | Zhou H, Zhu W L, Shi L, et al. Promotion effect of Fe in mordenite zeolite on carbonylation of dimethyl ether to methyl acetate[J]. Catalysis Science & Technology, 2015, 5(3): 1961-1968. |
45 | Li Y, Huang S Y, Cheng Z Z, et al. Promoting the activity of Ce-incorporated MOR in dimethyl ether carbonylation through tailoring the distribution of Brønsted acids[J]. Applied Catalysis B: Environmental, 2019, 256: 117777. |
46 | Wang M X, Huang S Y, Lv J, et al. Modifying the acidity of H-MOR and its catalytic carbonylation of dimethyl ether[J]. Chinese Journal of Catalysis, 2016, 37(9): 1530-1537. |
47 | Román-Leshkov Y, Moliner M, Davis M E. Impact of controlling the site distribution of Al atoms on catalytic properties in ferrierite-type zeolites[J]. The Journal of Physical Chemistry C, 2011, 115(4): 1096-1102. |
48 | Liu J L, Xue H F, Huang X M, et al. Stability enhancement of H-mordenite in dimethyl ether carbonylation to methyl acetate by pre-adsorption of pyridine[J]. Chinese Journal of Catalysis, 2010, 31(7): 729-738. |
49 | Zhao N, Tian Y, Zhang L F, et al. Spacial hindrance induced recovery of over-poisoned active acid sites in pyridine-modified H-mordenite for dimethyl ether carbonylation[J]. Chinese Journal of Catalysis, 2019, 40(6): 895-904. |
50 | Cao K P, Fan D, Li L Y, et al. Insights into the pyridine-modified MOR zeolite catalysts for DME carbonylation[J]. ACS Catalysis, 2020, 10(5): 3372-3380. |
51 | Liu S P, Liu H C, Ma X G, et al. Identifying and controlling the acid site distributions in mordenite zeolite for dimethyl ether carbonylation reaction by means of selective ion-exchange[J]. Catalysis Science & Technology, 2020, 10(14): 4663-4672. |
52 | 杨天宇, 曹祖宾, 韩冬云, 等. 乙酸甲酯催化加氢制乙醇工艺[J]. 化工进展, 2015, 34(7): 1872-1876, 1904. |
Yang T Y, Cao Z B, Han D Y, et al. Process research on the catalytic hydrogenation of methyl acetate to ethanol[J]. Chemical Industry and Engineering Progress, 2015, 34(7): 1872-1876, 1904. | |
53 | Zhang B, Chen Y, Li J W, et al. High efficiency Cu-ZnO hydrogenation catalyst: the tailoring of Cu-ZnO interface sites by molecular layer deposition[J]. ACS Catalysis, 2015, 5(9): 5567-5573. |
54 | 冯翀, 俞金山, 刘甜甜, 等. 基于限域效应的铜基草酸二甲酯加氢催化剂研究进展[J]. 天然气化工(C1化学与化工), 2020, 45(3): 96-101. |
Feng C, Yu J S, Liu T T, et al. Research progress in confinement Cu-based catalysts for hydrogenation of dimethyl oxalate to ethylene glycol[J]. Natural Gas Chemical Industry, 2020, 45(3): 96-101. | |
55 | 关鹏搏. 脂肪醇制造与应用[M]. 北京: 轻工业出版社, 1990: 226-227. |
Guan P B. Production and Application of Fatty Alcohols [M]. Beijing: Light Industry Press, 1990: 226-227. | |
56 | Chen L F, Guo P J, Qiao M H, et al. Cu/SiO2 catalysts prepared by the ammonia-evaporation method: texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. Journal of Catalysis, 2008, 257(1): 172-180. |
57 | Wei Q H, Yang G H, Gao X H, et al. A facile ethanol fuel synthesis from dimethyl ether and syngas over tandem combination of Cu-doped HZSM35 with Cu-Zn-Al catalyst[J]. Chemical Engineering Journal, 2017, 316: 832-841. |
58 | Huang X M, Ma M, Miao S, et al. Hydrogenation of methyl acetate to ethanol over a highly stable Cu/SiO2 catalyst: reaction mechanism and structural evolution[J]. Applied Catalysis A: General, 2017, 531: 79-88. |
59 | Wang S R, Guo W W, Wang H X, et al. Effect of the Cu/SBA-15 catalyst preparation method on methyl acetate hydrogenation for ethanol production[J]. New Journal of Chemistry, 2014, 38(7): 2792-2800. |
60 | Wang D, Yang G H, Ma Q X, et al. Confinement effect of carbon nanotubes: copper nanoparticles filled carbon nanotubes for hydrogenation of methyl acetate[J]. ACS Catalysis, 2012, 2(9): 1958-1966. |
61 | Wang Y, Zhao Y J, Lv J, et al. Facile synthesis of Cu@CeO2 and its catalytic behavior for the hydrogenation of methyl acetate to ethanol[J]. ChemCatChem, 2017, 9(12): 2085-2090. |
62 | San X G, Zhang Y, Shen W J, et al. New synthesis method of ethanol from dimethyl ether with a synergic effect between the zeolite catalyst and metallic catalyst[J]. Energy & Fuels, 2009, 23(5): 2843-2844. |
63 | Feng X B, Yao J, Zeng Y, et al. More efficient ethanol synthesis from dimethyl ether and syngas over the combined nano-sized ZSM-35 zeolite with CuZnAl catalyst[J]. Catalysis Today, 2021, 369: 88-94. |
64 | Lu P, Chen Q J, Yang G H, et al. Space-confined self-regulation mechanism from a capsule catalyst to realize an ethanol direct synthesis strategy[J]. ACS Catal., 2020, 10(2): 1366-1374. |
[1] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[2] | 王子健, 柯明, 李佳涵, 李舒婷, 孙巾茹, 童燕兵, 赵治平, 刘加英, 任璐. 短b轴ZSM-5分子筛制备方法及应用研究进展[J]. 化工学报, 2023, 74(4): 1457-1473. |
[3] | 王荣, 王永洪, 张新儒, 李晋平. 6FDA型聚酰亚胺炭分子筛气体分离膜的构筑及其应用[J]. 化工学报, 2023, 74(4): 1433-1445. |
[4] | 何金峰, 李秀珍, 寇建耀, 陶庭杰, 余灿, 刘欢, 陈永元, 赵豪健, 江大好, 李小年. 乙醇制高级醇有序介孔氧化铝负载铜基催化剂研究[J]. 化工学报, 2023, 74(3): 1082-1091. |
[5] | 项望凯, 刘园园, 郑映, 潘鹏举. 基于熔融/固相缩聚制备中高分子量聚乙醇酸[J]. 化工学报, 2023, 74(2): 933-940. |
[6] | 白宇恩, 张彬瑞, 刘东阳, 赵亮, 高金森, 徐春明. ZSM-5分子筛酸性能和孔结构的协同作用对C5烯烃催化裂解性能的影响[J]. 化工学报, 2023, 74(1): 438-448. |
[7] | 王悦琳, 晁伟, 蓝晓程, 莫志朋, 佟淑环, 王铁峰. 合成气生物发酵法制乙醇的研究进展[J]. 化工学报, 2022, 73(8): 3448-3460. |
[8] | 郑涛, 刘海燕, 张睿, 孟祥海, 岳源源, 刘植昌. 基于分子筛绿色合成的天然硅铝矿物介尺度活化研究进展[J]. 化工学报, 2022, 73(6): 2334-2351. |
[9] | 王婵, 肖国锡, 郭小雪, 徐人威, 岳源源, 鲍晓军. 基于介尺度结构解聚-重组装的Beta分子筛的绿色合成及应用[J]. 化工学报, 2022, 73(6): 2690-2697. |
[10] | 王旭, 张乐瑶, 张昊轩, 演嘉辉, 吴玉帅, 吴冬, 陈汇勇, 马晓迅. 中空孔结构对W掺杂MFI分子筛丙酮吸附行为的研究[J]. 化工学报, 2022, 73(3): 1194-1206. |
[11] | 苏畅, 冯晓博, 张立云, 陈峰, 赵小燕, 曹景沛. 四乙基氢氧化铵改性对HMOR分子筛结构及二甲醚羰基化性能的影响[J]. 化工学报, 2022, 73(2): 712-721. |
[12] | 王吴玉, 史玉竹, 严龙, 张兴华, 马隆龙, 张琦. 负载型Co基双功能催化剂上戊酸酯生物燃料的制备[J]. 化工学报, 2022, 73(2): 689-698. |
[13] | 张超, 陈健, 殷文华, 沈圆辉, 钮朝阳, 余秀鑫, 张东辉, 唐忠利. 变压吸附氢气纯化过程瞬态分析[J]. 化工学报, 2022, 73(1): 308-321. |
[14] | 高文莉, 辛忠. Fe对Ni/SBA-16催化CO低温甲烷化促进作用的研究[J]. 化工学报, 2022, 73(1): 241-254. |
[15] | 韦双明, 余明高, 裴蓓, 李世梁, 康亚祥, 徐梦娇, 郭佳琪. 三元混合气体燃料爆炸特性实验研究[J]. 化工学报, 2022, 73(1): 451-460. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||