化工学报 ›› 2021, Vol. 72 ›› Issue (8): 3946-3957.DOI: 10.11949/0438-1157.20201775
高淑蓉1,2(),金佳鑫1,2,魏博建1,2,王晓东1,2()
收稿日期:
2020-12-09
修回日期:
2021-03-10
出版日期:
2021-08-05
发布日期:
2021-08-05
通讯作者:
王晓东
作者简介:
高淑蓉(1989—),女,博士,讲师,基金资助:
Shurong GAO1,2(),Jiaxin JIN1,2,Bojian WEI1,2,Xiaodong WANG1,2()
Received:
2020-12-09
Revised:
2021-03-10
Online:
2021-08-05
Published:
2021-08-05
Contact:
Xiaodong WANG
摘要:
抑制撞击液滴的结冰在实际工程应用中具有重要意义。寻求经济、高效的防/除冰方法是结冰领域的研究热点。针对撞击液滴的结冰问题,首先从动力学特性、结冰特性以及撞击液滴结冰的理论研究等方面进行综述,并对目前关于撞击液滴结冰中存在的一些问题进行分析。然后,基于撞击液滴的反弹特性可从源头上抑制结冰这种思路,提出降低接触时间、增加成核再辉时间的新方法。这些方法的提出有助于从源头上解决撞击液滴的结冰问题,将使“利用撞击液滴的反弹特性抑制结冰”的应用范围极大扩展,积极推动防结冰技术的发展。最后,对利用液滴的反弹特性进行抑制结冰的研究进行展望。
中图分类号:
高淑蓉, 金佳鑫, 魏博建, 王晓东. 液滴撞击疏水/超疏水表面防结冰技术研究进展及未来展望[J]. 化工学报, 2021, 72(8): 3946-3957.
Shurong GAO, Jiaxin JIN, Bojian WEI, Xiaodong WANG. Research progress and future prospects of anti-/de-icing technology for droplets impact on hydrophobic/superhydrophobic surfaces[J]. CIESC Journal, 2021, 72(8): 3946-3957.
1 | Zhang X, Liu X, Min J C, et al. Shape variation and unique tip formation of a sessile water droplet during freezing[J]. Applied Thermal Engineering, 2019, 147: 927-934. |
2 | Bai G, Gao D, Liu Z, et al. Probing the critical nucleus size for ice formation with graphene oxide nanosheets[J]. Nature, 2019, 576(7787): 437-441. |
3 | Sosso G C, Chen J, Cox S J, et al. Crystal nucleation in liquids: open questions and future challenges in molecular dynamics simulations[J]. Chemical Reviews, 2016, 116(12): 7078-7116. |
4 | 何强. 固体壁面水滴撞击结冰行为研究[D]. 西安: 西北工业大学, 2016. |
He Q. Freezing behavior of impacting droplet on cold surfaces[D]. Xi'an: Northwestern Polytechnical University, 2016. | |
5 | Yang G M, Guo K H, Li N. Freezing mechanism of supercooled water droplet impinging on metal surfaces[J]. International Journal of Refrigeration, 2011, 34(8): 2007-2017. |
6 | 刘骁. 液滴撞击超疏水冷表面的行为特征及抑冰机制研究[D]. 南京: 南京师范大学, 2018. |
Liu X. Study on the behavior characteristics and ice inhibition mechanism of droplets impacting on superhydrophobic cold surface[D]. Nanjing: Nanjing Normal University, 2018. | |
7 | Jiang J, Li G X, Sheng Q, et al. Microscopic mechanism of ice nucleation: the effects of surface rough structure and wettability[J]. Applied Surface Science, 2020, 510: 145520. |
8 | 郑海坤, 常士楠, 赵媛媛. 超疏水/超润滑表面的防疏冰机理及其应用[J]. 化学进展, 2017, 29(1): 102-118. |
Zheng H K, Chang S N, Zhao Y Y. Anti-icing & icephobic mechanism and applications of superhydrophobic / ultra slippery surface[J]. Progress in Chemistry, 2017, 29(1): 102-118. | |
9 | 彭华乔, 李林, 夏祖西, 等. 超疏水材料防冰研究进展[J]. 化工新型材料, 2019, 47(11): 1-5. |
Peng H Q, Li L, Xia Z X, et al. Research progress in anti-ice performance of superhydrophobic material[J]. New Chemical Materials, 2019, 47(11): 1-5. | |
10 | 杜雁霞, 李明, 桂业伟, 等. 飞机结冰热力学行为研究综述[J]. 航空学报, 2017, 38(2): 30-41. |
Du Y X, Li M, Gui Y W, et al. Review of thermodynamic behaviors in aircraft icing process[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 30-41. | |
11 | Vazirinasab E, Maghsoudi K, Jafari R, et al. A comparative study of the icephobic and self-cleaning properties of Teflon materials having different surface morphologies[J]. Journal of Materials Processing Technology, 2020, 276: 116415. |
12 | 李鑫林. 仿生超疏水表面的构建及其防冰特性研究[D]. 长春: 吉林大学, 2020. |
Li X L. Fabrication of bionic superhydrophobic surface and its anti-icing performance[D]. Changchun: Jilin University, 2020. | |
13 | 蒋兴良, 周洪宇, 何凯, 等. 风机叶片运用超疏水涂层防覆冰的性能衰减[J]. 高电压技术, 2019, 45(1): 167-172. |
Jiang X L, Zhou H Y, He K, et al. Anti-icing performance degradation for wind blades with superhydrophobic coatings[J]. High Voltage Engineering, 2019, 45(1): 167-172. | |
14 | Rico V J, López-Santos C, Villagrá M, et al. Hydrophobicity, freezing delay, and morphology of laser-treated aluminum surfaces[J]. Langmuir, 2019, 35(19): 6483-6491. |
15 | 武壮壮, 马国佳, 崔向中, 等. 微纳结构超疏水表面的浸润性及防冰性能[J]. 复合材料学报, 2020, 37(11): 2769-2775. |
Wu Z Z, Ma G J, Cui X Z, et al. Wettability and anti-icing performance of micro-nano structure superhydrophobic surface[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2769-2775. | |
16 | 陈凯, 王强, 夏祖西. 飞机超疏水表面的防冰性能研究进展[J]. 应用化工, 2016, 45(10): 1969-1973. |
Chen K, Wang Q, Xia Z X. Progress research on anti-icing property of aircraft superhydrophobic surface[J]. Applied Chemical Industry, 2016, 45(10): 1969-1973. | |
17 | 马蕾, 王贤明, 宁亮. 飞机防冰涂料的研究进展[J]. 中国涂料, 2014, 29(1): 11-14, 18. |
Ma L, Wang X M, Ning L. Research progress of aircraft anti-icing coatings[J]. China Coatings, 2014, 29(1): 11-14, 18. | |
18 | 王莉芳, 何舟东. 飞机结冰对飞行安全的影响[N]. 中国航空报, 2018-04-17(6). |
Wang L F, He Z D. The impact of aircraft icing on flight safety [N]. China Aviation News, 2018-04-17(6). | |
19 | 朱永灿. 架空输电线路覆冰生长模型及其关键参数研究[D]. 西安: 西安电子科技大学, 2017. |
Zhu Y C. Research on the icing growth model and key parameters on overhead transmission lines[D]. Xi'an: Xidian University, 2017. | |
20 | Vazirinasab E, Jafari R, Momen G. Application of superhydrophobic coatings as a corrosion barrier: a review[J]. Surface and Coatings Technology, 2018, 341: 40-56. |
21 | Wang L P, Kong W L, Wang F X, et al. Effect of nucleation time on freezing morphology and type of a water droplet impacting onto cold substrate[J]. International Journal of Heat and Mass Transfer, 2019, 130: 831-842. |
22 | Alizadeh A, Yamada M, Li R, et al. Dynamics of ice nucleation on water repellent surfaces[J]. Langmuir, 2012, 28(6): 3180-3186. |
23 | Hao P F, Lv C, Zhang X W. Freezing of sessile water droplets on surfaces with various roughness and wettability[J]. Applied Physics Letters, 2014, 104(16): 161609. |
24 | Richard D, Quéré D. Bouncing water drops[J]. Europhysics Letters (EPL), 2000, 50(6): 769-775. |
25 | Zhang Z, Liu X Y. Control of ice nucleation: freezing and antifreeze strategies[J]. Chemical Society Reviews, 2018, 47(18): 7116-7139. |
26 | Schremb M, Roisman I V, Tropea C. Transient effects in ice nucleation of a water drop impacting onto a cold substrate[J]. Physical Review E, 2017, 95(2): 022805. |
27 | Josserand C, Thoroddsen S T. Drop impact on a solid surface[J]. Annual Review of Fluid Mechanics, 2016, 48(1): 365-391. |
28 | Liu Y, Andrew M, Li J, et al. Symmetry breaking in drop bouncing on curved surfaces[J]. Nature Communications, 2015, 6: 10034. |
29 |
春江, 王瑾萱, 徐晨, 等. 液滴撞击超亲水表面的最大铺展直径预测模型[J]. 物理学报, 2021, doi: 10.7498/aps.70.20201918.
DOI |
Chun J, Wang J X, Xu C, et al. Theoretical model of maximum spreading diameter on superhydrophilic surfaces[J]. Acta Physica Sinica, 2021, doi: 10.7498/aps.70.20201918.
DOI |
|
30 | Zhou W C, Loney D, Degertekin F L, et al. What controls dynamics of droplet shape evolution upon impingement on a solid surface?[J]. AIChE Journal, 2013, 59(8): 3071-3082. |
31 | Yao Y N, Li C, Zhang H, et al. Modelling the impact, spreading and freezing of a water droplet on horizontal and inclined superhydrophobic cooled surfaces[J]. Applied Surface Science, 2017, 419: 52-62. |
32 | 李栋, 王鑫, 高尚文, 等. 单液滴撞击超疏水冷表面的反弹及破碎行为[J]. 化工学报, 2017, 68(6): 2473-2482. |
Li D, Wang X, Gao S W, et al. Rebounding and splashing behavior of single water droplet impacting on cold superhydrophobic surface[J]. CIESC Journal, 2017, 68(6): 2473-2482. | |
33 | Yao Y N, Li C, Tao Z X, et al. Experimental and numerical study on the impact and freezing process of a water droplet on a cold surface[J]. Applied Thermal Engineering, 2018, 137: 83-92. |
34 | Li H, Roisman I V, Tropea C. Influence of solidification on the impact of supercooled water drops onto cold surfaces[J]. Experiments in Fluids, 2015, 56(6): 1-13. |
35 | Li H, Roisman I, Tropea C. Impact of supercooled liquid drops onto cold solid substrates[C]//SAE Technical Paper Series. Warrendale, PA, United States: SAE International, 2015. |
36 | 冷梦尧, 常士楠, 丁亮. 不同浸润性冷表面上水滴碰撞结冰的数值模拟[J]. 化工学报, 2016, 67(7): 2784-2792. |
Leng M Y, Chang S N, Ding L. Numerical simulation of droplet impinging and freezing on cold surfaces with different wettability[J]. CIESC Journal, 2016, 67(7): 2784-2792. | |
37 | Maitra T, Antonini C, Tiwari M K, et al. Supercooled water drops impacting superhydrophobic textures[J]. Langmuir, 2014, 30(36): 10855-10861. |
38 | Alizadeh A, Bahadur V, Zhong S, et al. Temperature dependent droplet impact dynamics on flat and textured surfaces[J]. Applied Physics Letters, 2012, 100(11): 111601. |
39 | 姚一娜, 刘呈, 李聪, 等. 液滴撞击超疏水冷表面的反弹/黏附特性对比研究[J]. 中国安全生产科学技术, 2021, 17(1): 31-35. |
Yao Y N, Liu C, Li C, et al. Comparative study on rebound/adhesion characteristics of droplets impacting superhydrophobic cold surface[J]. Journal of Safety Science and Technology, 2021, 17(1): 31-35. | |
40 | Zhang R, Hao P F, Zhang X W, et al. Supercooled water droplet impact on superhydrophobic surfaces with various roughness and temperature[J]. International Journal of Heat and Mass Transfer, 2018, 122: 395-402. |
41 | Xie P, Ding H B, Ingham D B, et al. Analysis and prediction of the gas-liquid interfacial area for droplets impact on solid surfaces[J]. Applied Thermal Engineering, 2020, 178: 115583. |
42 | Chandra S, Avedisian C T. On the collision of a droplet with a solid surface[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1991, 432(1884): 13-41. |
43 | Wang Y B, Wang Y F, Gao S R, et al. Universal model for the maximum spreading factor of impacting nanodroplets: from hydrophilic to hydrophobic surfaces[J]. Langmuir, 2020, 36(31): 9306-9316. |
44 | Wang F J, Yang L, Wang L B, et al. Maximum spread of droplet impacting onto solid surfaces with different wettabilities: adopting a rim-lamella shape[J]. Langmuir, 2019, 35(8): 3204-3214. |
45 | Bahadur V, Mishchenko L, Hatton B, et al. Predictive model for ice formation on superhydrophobic surfaces[J]. Langmuir, 2011, 27(23): 14143-14150. |
46 | Jin Z Y, Zhang H H, Yang Z G. The impact and freezing processes of a water droplet on a cold surface with different inclined angles[J]. International Journal of Heat and Mass Transfer, 2016, 103: 886-893. |
47 | 吴晓敏, 许旺发, 王维城, 等. 冷面上过冷水珠冻结的实验研究[J]. 工程热物理学报, 2005, 26(1): 104-106. |
Wu X M, Xu W F, Wang W C, et al. Experimental study on super-cooled drop freezing on cold surfaces[J]. Journal of Engineering Thermophysics, 2005, 26(1): 104-106. | |
48 | He Z Y, Liu K, Wang J J. Bioinspired materials for controlling ice nucleation, growth, and recrystallization[J]. Accounts of Chemical Research, 2018, 51(5): 1082-1091. |
49 | Mishchenko L, Hatton B, Bahadur V, et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets[J]. ACS Nano, 2010, 4(12): 7699-7707. |
50 | Schremb M, Roisman I V, Tropea C. Different outcomes after inclined impacts of water drops on a cooled surface[C]//Proceedings of the 13th Triennial International Conference on Liquid Atomization and Spray Systems, 2015. |
51 | Sun M M, Kong W L, Wang F X, et al. Impact freezing modes of supercooled droplets determined by both nucleation and icing evolution[J]. International Journal of Heat and Mass Transfer, 2019, 142: 118431. |
52 | Zhao J N, Li X P, Cheng P. Lattice Boltzmann simulation of a droplet impact and freezing on cold surfaces[J]. International Communications in Heat and Mass Transfer, 2017, 87: 175-182. |
53 | Mohammadi M, Tembely M, Dolatabadi A. Predictive model of supercooled water droplet pinning/repulsion impacting a superhydrophobic surface: the role of the gas-liquid interface temperature[J]. Langmuir, 2017, 33(8): 1816-1825. |
54 | Tembely M, Dolatabadi A. A comprehensive model for predicting droplet freezing features on a cold substrate[J]. Journal of Fluid Mechanics, 2019, 859: 566-585. |
55 | Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79(6): 667-677. |
56 | Richard D, Clanet C, Quéré D. Contact time of a bouncing drop[J]. Nature, 2002, 417(6891): 811. |
57 | Li X Y, Ma X H, Lan Z. Dynamic behavior of the water droplet impact on a textured hydrophobic/superhydrophobic surface: the effect of the remaining liquid film arising on the Pillars' tops on the contact time[J]. Langmuir, 2010, 26(7): 4831-4838. |
58 | Bird J C, Dhiman R, Kwon H M, et al. Reducing the contact time of a bouncing drop[J]. Nature, 2013, 503(7476): 385-388. |
59 | Lin D J, Wang L, Wang X D, et al. Reduction in the contact time of impacting droplets by decorating a rectangular ridge on superhydrophobic surfaces[J]. International Journal of Heat and Mass Transfer, 2019, 132: 1105-1115. |
60 | Chantelot P, Mazloomi Moqaddam A, Gauthier A, et al. Water ring-bouncing on repellent singularities[J]. Soft Matter, 2018, 14(12): 2227-2233. |
61 | Liu Y H, Moevius L, Xu X P, et al. Pancake bouncing on superhydrophobic surfaces[J]. Nature Physics, 2014, 10(7): 515-519. |
62 | 权生林, 李爽, 李维仲, 等. 用格子Boltzmann方法模拟液滴撞击固壁动力学行为[J]. 计算力学学报, 2009, 26(5): 627-632. |
Quan S L, Li S, Li W Z, et al. A simulation of impact of droplets on solid surfaces by using the lattice Boltzmann method[J]. Chinese Journal of Computational Mechanics, 2009, 26(5): 627-632. | |
63 | Naveen P T, Simhadri R R, Ranjith S K. Simultaneous effect of droplet temperature and surface wettability on single drop impact dynamics[J]. Fluid Dynamics, 2020, 55(5): 640-652. |
64 | Wang F J, Fang T G. Retraction dynamics of water droplets after impacting upon solid surfaces from hydrophilic to superhydrophobic[J]. Physical Review Fluids, 2020, 5(3): 033604. |
65 | Zhang X, Liu X, Wu X M, et al. Impacting-freezing dynamics of a supercooled water droplet on a cold surface: rebound and adhesion[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119997. |
66 | Antonini C, Innocenti M, Horn T, et al. Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems[J]. Cold Regions Science and Technology, 2011, 67(1/2): 58-67. |
67 | Peng H Q, Wang Q, Wang T M, et al. Study on dynamics and freezing behaviors of water droplet on superhydrophobic aluminum surface[J]. Applied Physics A, 2020, 126(10): 1-11. |
68 | Zhang X, Liu X, Wu X M, et al. Experimental investigation and statistical analysis of icing nucleation characteristics of sessile water droplets[J]. Experimental Thermal and Fluid Science, 2018, 99: 26-34. |
69 | Ding B, Wang H, Zhu X, et al. How supercooled superhydrophobic surfaces affect dynamic behaviors of impacting water droplets?[J]. International Journal of Heat and Mass Transfer, 2018, 124: 1025-1032. |
70 | Boinovich L B, Emelyanenko A M, Emelyanenko K A, et al. Modus operandi of protective and anti-icing mechanisms underlying the design of longstanding outdoor icephobic coatings[J]. ACS Nano, 2019, 13(4): 4335-4346. |
[1] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[2] | 苏伟, 马东旭, 金旭, 刘忠彦, 张小松. 表面润湿性对霜层传递特性影响可视化实验研究[J]. 化工学报, 2023, 74(S1): 122-131. |
[3] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[4] | 季超, 刘炜, 漆虹. 基于空冷的疏水陶瓷膜冷凝器用于烟气脱湿过程强化的实验研究[J]. 化工学报, 2022, 73(5): 2174-2182. |
[5] | 李梦雨, 王冬祥, 郑晓阳, 徐桂转, 杜朝军, 常春. 粗甘油生物基聚氨酯材料的制备及吸附性能研究[J]. 化工学报, 2022, 73(5): 2270-2278. |
[6] | 李文祥, 王钧禾, 郝怡静, 周乐平. 淬火初温影响疏水表面沸腾传热特性的实验研究[J]. 化工学报, 2022, 73(12): 5394-5404. |
[7] | 李英杰, 李奇侠, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 波浪结构超疏水表面对液滴聚并弹跳的影响[J]. 化工学报, 2022, 73(10): 4345-4354. |
[8] | 吴延鹏, 雷晓宇, 陆禹名, 陈卉妮. 太阳能利用透光表面超疏水增透膜研究进展[J]. 化工学报, 2021, 72(S1): 21-29. |
[9] | 苏伟, 芦志飞, 张小松. 竖直超疏水翅片间霜层动态生长特性[J]. 化工学报, 2021, 72(S1): 244-256. |
[10] | 林石泉, 赵雅鑫, 吕中原, 赖展程, 胡海涛. 亲疏水性对泡沫金属池沸腾换热特性的影响[J]. 化工学报, 2021, 72(S1): 295-301. |
[11] | 王立晖, 刘焕, 李赫宇, 郑晓冰, 姜艳军, 高静. 核壳结构磁性树枝状纤维形有机硅固定化脂肪酶制备及其应用[J]. 化工学报, 2021, 72(9): 4861-4871. |
[12] | 姜洪鹏, 白敏丽, 高栋栋, 高林松, 吕继组. 超疏水/亲水性结构表面流动沸腾传热实验研究[J]. 化工学报, 2021, 72(8): 4093-4103. |
[13] | 周通, 陈晶晶, 涂春朝, 吉晓燕, 陆小华, 王昌松. 管道内多巴胺超疏水涂层的制备[J]. 化工学报, 2021, 72(7): 3814-3822. |
[14] | 贺征宇, 彭本利, 苏风民, 纪玉龙, 马鸿斌. 微纳结构超疏水表面参数影响含不凝气蒸汽冷凝传热的理论分析[J]. 化工学报, 2021, 72(5): 2570-2577. |
[15] | 朱丹丹, 许雄文, 刘金平, 卢炯. 混合润湿性图案化铜基表面冷凝换热性能研究[J]. 化工学报, 2021, 72(5): 2528-2546. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||