1 |
Minelgaitė A, Liobikienė G. Waste problem in European Union and its influence on waste management behaviours[J]. Science of the Total Environment, 2019, 667: 86-93.
|
2 |
Nanda S, Berruti F. Municipal solid waste management and landfilling technologies: a review[J]. Environmental Chemistry Letters, 2021, 19(2): 1433-1456.
|
3 |
Chen Y C. Evaluating greenhouse gas emissions and energy recovery from municipal and industrial solid waste using waste-to-energy technology[J]. Journal of Cleaner Production, 2018, 192: 262-269.
|
4 |
Cai W, Liu C H, Zhang C X, et al. Developing the ecological compensation criterion of industrial solid waste based on emergy for sustainable development[J]. Energy, 2018, 157: 940-948.
|
5 |
中华人民共和国国家统计局. 中国统计年鉴2020 [M]. 北京:中国统计出版社, 2020.
|
|
National Bureau of Statistics of China. Chinese Statistical Yearbook 2020[M]. Beijing: China Statistics Press, 2020.
|
6 |
朱君. 制浆造纸行业固废物资源化利用探索[J]. 化工管理, 2014, 21: 175-176.
|
|
Zhu J. Exploration on resource utilization of solid waste in pulp and paper industry[J]. Chemical Enterprise Management, 2014, 21:175-176.
|
7 |
Veluchamy C, Kalamdhad A S. Influence of pretreatment techniques on anaerobic digestion of pulp and paper mill sludge: a review[J]. Bioresource Technology, 2017, 245: 1206-1219.
|
8 |
宋艳培, 庄修政, 詹昊, 等. 城市污泥/褐煤共水热碳化产物的热化学转化特性及规律研究[J]. 化工学报, 2020, 71(5): 2320-2332.
|
|
Song Y P, Zhuang X Z, Zhan H, et al. Investigation on thermochemical conversion characteristics and regularity of co-hydrothermal carbonization solid fuel from sewage sludge and lignite[J]. CIESC Journal, 2020, 71(5): 2320-2332.
|
9 |
Fang S W, Yu Z S, Lin Y, et al. A study on experimental characteristic of co-pyrolysis of municipal solid waste and paper mill sludge with additives[J]. Applied Thermal Engineering, 2017, 111: 292-300.
|
10 |
Das S, Lee S H, Kumar P, et al. Solid waste management: scope and the challenge of sustainability[J]. Journal of Cleaner Production, 2019, 228: 658-678.
|
11 |
Wang G Y, Dai Y J, Yang H P, et al. A review of recent advances in biomass pyrolysis[J]. Energy & Fuels, 2020, 34(12): 15557-15578.
|
12 |
Czajczyńska D, Anguilano L, Ghazal H, et al. Potential of pyrolysis processes in the waste management sector[J]. Thermal Science and Engineering Progress, 2017, 3: 171-197.
|
13 |
Song Q, Zhao H Y, Xing W L, et al. Effects of various additives on the pyrolysis characteristics of municipal solid waste[J]. Waste Management, 2018, 78: 621-629.
|
14 |
Ma W C, Rajput G, Pan M H, et al. Pyrolysis of typical MSW components by Py-GC/MS and TG-FTIR[J]. Fuel, 2019, 251: 693-708.
|
15 |
Chen H P, Xie Y P, Chen W, et al. Investigation on co-pyrolysis of lignocellulosic biomass and amino acids using TG-FTIR and Py-GC/MS[J]. Energy Conversion and Management, 2019, 196: 320-329.
|
16 |
Chen L, Yu Z S, Liang J Y, et al. Co-pyrolysis of chlorella vulgaris and kitchen waste with different additives using TG-FTIR and Py-GC/MS[J]. Energy Conversion and Management, 2018, 177: 582-591.
|
17 |
Sun C, Li C X, Tan H Y, et al. Synergistic effects of wood fiber and polylactic acid during co-pyrolysis using TG-FTIR-MS and Py-GC/MS[J]. Energy Conversion and Management, 2019, 202: 112212.
|
18 |
陈强, 王艳, 翟华敏. 基于TG-FTIR和Py-GC-MS分析的椰壳热解特性研究[J]. 林产化学与工业, 2020, 40(1): 45-52.
|
|
Chen Q, Wang Y, Zhai H M. Pyrolysis characteristics of coconut shell based on TG-FTIR and Py-GC-MS analysis[J]. Chemistry and Industry of Forest Products, 2020, 40(1):45-52.
|
19 |
Yang H P, Yan R, Chen H P, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12/13): 1781-1788.
|
20 |
Dai G X, Wang S R, Zou Q, et al. Improvement of aromatics production from catalytic pyrolysis of cellulose over metal-modified hierarchical HZSM-5[J]. Fuel Processing Technology, 2018, 179: 319-323.
|
21 |
宋飞跃, 丁浩植, 张立强, 等. 生物质三组分混合热解耦合作用研究[J]. 太阳能学报, 2019, 40(1): 149-156.
|
|
Song F Y, Ding H Z, Zhang L Q, et al. Research on pyrolysis of mixture of biomass components[J]. Acta Energiae Solaris Sinica, 2019, 40(1): 149-156.
|
22 |
Dai G X, Wang K G, Wang G Y, et al. Initial pyrolysis mechanism of cellulose revealed by in situ DRIFT analysis and theoretical calculation[J]. Combustion and Flame, 2019, 208: 273-280.
|
23 |
Singh R K, Ruj B, Sadhukhan A K, et al. A TG-FTIR investigation on the co-pyrolysis of the waste HDPE, PP, PS and PET under high heating conditions[J]. Journal of the Energy Institute, 2020, 93(3): 1020-1035.
|
24 |
Alam M, Rammohan D, Peela N R. Catalytic co-pyrolysis of wet-torrefied bamboo sawdust and plastic over the zeolite H-ZSM-5: synergistic effects and kinetics[J]. Renewable Energy, 2021, 178: 608-619.
|
25 |
Alam M, Bhavanam A, Jana A, et al. Co-pyrolysis of bamboo sawdust and plastic: synergistic effects and kinetics[J]. Renewable Energy, 2020, 149: 1133-1145.
|
26 |
Wang S R, Dai G X, Ru B, et al. Effects of torrefaction on hemicellulose structural characteristics and pyrolysis behaviors [J]. Bioresource Technology, 2016, 218: 1106-1114.
|
27 |
Dai G X, Zou Q, Wang S R, et al. Effect of torrefaction on the structure and pyrolysis behavior of lignin[J]. Energy & Fuels, 2018, 32(4): 4160-4166.
|