1 |
朱丙田, 刘德华, 任海玉, 等. 1,3-丙二醇发酵条件的探索[J]. 化工冶金, 2000(4): 420-422.
|
|
Zhu B T, Liu D H, Ren H Y, et al. Experiments on optimal conditions for 1,3-propanediol fermentation[J]. Engineering Chemistry & Metallurgy, 2000(4): 420-422.
|
2 |
李晓姝, 张霖, 高大成, 等. 发酵法生产1,3-丙二醇的研究进展[J]. 化工进展, 2017, 36(4): 1395-1403.
|
|
Li X S, Zhang L, Gao D C, et al. Progress on the production of 1, 3-propanediol by fermentation[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1395-1403.
|
3 |
谢家明, 徐泽辉, 夏蓉晖, 等. 1,3-丙二醇制备工艺的研究进展[J]. 合成纤维, 2005, 34(2): 13-16, 48.
|
|
Xie J M, Xu Z H, Xia R H, et al. Research progress on the technology for producing 1,3-propanediol[J]. Synthetic Fiber in China, 2005, 34(2): 13-16, 48.
|
4 |
刘德华, 刘宏娟, 程可可. 微生物发酵法生产1,3-丙二醇研究进展[J]. 合成纤维, 2005, 34(9): 11-15.
|
|
Liu D H, Liu H J, Cheng K K. Research progress on the production of 1,3-propanediol by fermentation[J]. Synthetic Fiber in China, 2005, 34(9): 11-15.
|
5 |
Huang H, Gong C S, Tsao G T. Production of 1,3-propanediol by Klebsiella pneumoniae [J]. Applied Biochemistry and Biotechnology, 2002, 98/99/100: 687-698.
|
6 |
陈振, 刘宏娟, 刘德华. 有氧条件下Klebsiella pneumoniae发酵生产1, 3-丙二醇的研究[J]. 现代化工, 2006, 26(S2): 297-300.
|
|
Chen Z, Liu H J, Liu D H. Study on 1,3-propanediol production by Klebsiella pneumoniae under aerobic conditions[J]. Modern Chemical Industry, 2006, 26(S2): 297-300.
|
7 |
Zhang Y, Li Z H, Liu Y, et al. Systems metabolic engineering of Vibrio natriegens for the production of 1,3-propanediol[J]. Metabolic Engineering, 2021, 65: 52-65.
|
8 |
Jalasutram V, Jetty A. Optimization of 1,3-propanediol production by Klebsiella pneumoniae 141B using Taguchi methodology: improvement in production by cofermentation studies[J]. Research in Biotechnology, 2011, 2(2): 189-197.
|
9 |
Xu Q, Yang X T, Liu C W, et al. Chemical plant flare minimization via plantwide dynamic simulation[J]. Industrial & Engineering Chemistry Research, 2009, 48(7): 3505-3512.
|
10 |
Zhang A H, Zhu K Y, Zhuang X Y, et al. A robust soft sensor to monitor 1, 3-propanediol fermentation process by Clostridium butyricum based on artificial neural network[J]. Biotechnology and Bioengineering, 2020, 117(11): 3345-3355.
|
11 |
Zhou Y K, Li G, Dong J K, et al. MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2018, 47: 294-302.
|
12 |
李浩然, 邱彤. 基于因果分析的烧结生产状态预测模型[J]. 化工学报, 2021, 72(3): 1438-1446.
|
|
Li H R, Qiu T. Sintering production state prediction model based on causal analysis[J]. CIESC Journal, 2021, 72(3): 1438-1446.
|
13 |
Mockus J. Bayesian Approach to Global Optimization: Theory and Applications[M/OL]. Netherlands: Springer, 1989[2021-07-12]. .
|
14 |
Griffiths R R, Hernández-Lobato J M. Constrained Bayesian optimization for automatic chemical design using variational autoencoders[J]. Chemical Science, 2019, 11(2): 577-586.
|
15 |
Gómez-Bombarelli R, Wei J N, Duvenaud D, et al. Automatic chemical design using a data-driven continuous representation of molecules[J]. ACS Central Science, 2018, 4(2): 268-276.
|
16 |
Iverson S V, Haddock T L, Beal J, et al. CIDAR MoClo: improved MoClo assembly standard and new E. coli part library enable rapid combinatorial design for synthetic and traditional biology[J]. ACS Synthetic Biology, 2016, 5(1): 99-103.
|
17 |
Shahriari B, Swersky K, Wang Z Y, et al. Taking the human out of the loop: a review of Bayesian optimization[J]. Proceedings of the IEEE, 2016, 104(1): 148-175.
|
18 |
Brochu E, Cora V M, de Freitas N. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning[EB/OL]. 2010. .
|
19 |
Rasmussen C E, Williams C K I. Gaussian Processes for Machine Learning[M]. Cambridge: The MIT Press, 2006.
|
20 |
Bull A D. Convergence rates of efficient global optimization algorithms[J]. Journal of Machine Learning Research, 2011, 12(10): 2879-2904.
|