化工学报 ›› 2022, Vol. 73 ›› Issue (11): 5211-5219.DOI: 10.11949/0438-1157.20220848
收稿日期:
2022-06-17
修回日期:
2022-09-12
出版日期:
2022-11-05
发布日期:
2022-12-06
通讯作者:
王宝凤
作者简介:
杨晓阳(1995—),男,博士研究生,yllskk@163.com
基金资助:
Xiaoyang YANG(), Baofeng WANG(), Xutao SONG, Fengling YANG, Fangqin CHENG
Received:
2022-06-17
Revised:
2022-09-12
Online:
2022-11-05
Published:
2022-12-06
Contact:
Baofeng WANG
摘要:
采用高温高压反应釜进行了污泥(SS)和高硫煤(CS)的共水热碳化实验。分别考察了混合比和温度对水热炭中硫氮元素形态转化规律的影响。研究结果表明,经过水热处理后,SS中蛋白质氮(N-A)转化为杂环类氮,CS中吡咯氮(N-5)和吡啶氮氧化物(N-X)转化为吡啶氮(N-6)和季氮(N-Q);SS与CS中硫元素逐渐转化为噻吩硫和硫酸盐。随着CS混合比例和温度的升高,水热炭中含氮芳族杂环(例如N-6、N-5和N-Q)占比增加。另外,随着CS混合比例和温度升高,水热炭中噻吩硫含量分别逐渐增加至22.61%和24.98%;升高温度提高了水热炭中硫酸盐含量,而增加CS混合比例却降低了硫酸盐含量。本研究可为后续SS和CS的资源化清洁利用提供理论基础。
中图分类号:
杨晓阳, 王宝凤, 宋旭涛, 杨凤玲, 程芳琴. 污泥与高硫煤共水热碳化过程中硫氮形态转化规律[J]. 化工学报, 2022, 73(11): 5211-5219.
Xiaoyang YANG, Baofeng WANG, Xutao SONG, Fengling YANG, Fangqin CHENG. Migration of sulfur and nitrogen during co-hydrothermal carbonization process of sewage sludge and high-sulfur coal[J]. CIESC Journal, 2022, 73(11): 5211-5219.
Sample | Ultimate analysis/% (d) | H/C | O/C | Proximate analysis/% (d) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N | C | H | S | O① | Ash | VM | FC | |||
SS-Raw | 3.51±0.09 | 20.38±0.47 | 3.04±0.06 | 1.92±0.07 | 16.87±0.01 | 1.79±0.07 | 0.62±0.01 | 54.28±0.26 | 45.59±0.24 | 0.13±0.02 |
CS-Raw | 1.07±0.05 | 53.70±0.30 | 2.83±0.04 | 2.93±0.04 | 12.96±0.06 | 0.63±0.01 | 0.18±0.01 | 26.51±0.37 | 18.79±0.56 | 54.70± 0.19 |
S10C0-240 | 1.65±0.04 | 9.99±0.06 | 1.18±0..06 | 0.59±0.07 | 6.65±0.15 | 1.42±0.06 | 0.50±0.01 | 79.94±0.38 | 17.34±0.79 | 2.72±0.41 |
S7C3-240 | 1.06±0.03 | 26.40±0.57 | 1.84±0.07 | 1.73±0.04 | 5.84±0.01 | 0.84±0.01 | 0.17±0.01 | 63.13±0.72 | 16.87±0.74 | 20.00±0.02 |
S5C5-240 | 0.98±0.05 | 34.84±0.81 | 2.15±0.11 | 2.17±0.05 | 6.61±0.99 | 0.74±0.06 | 0.14±0.02 | 53.25±0.39 | 15.85±0.73 | 30.90±0.34 |
S3C7-240 | 0.83±0.02 | 41.91±0.44 | 2.51±0.06 | 2.43±0.05 | 6.68±0.56 | 0.72±0.02 | 0.12±0.01 | 45.64±0.21 | 15.09±0.57 | 39.27±0.36 |
S0C10-240 | 0.66±0.04 | 55.03±0.83 | 2.20±0.06 | 2.38±0.06 | 10.18±2.89 | 0.48±0.01 | 0.14±0.04 | 29.55±0.56 | 13.63±0.88 | 56.82±1.44 |
S5C5-160 | 1.07±0.03 | 34.15±0.27 | 2.28±0.06 | 1.66±0.05 | 11.58±0.30 | 0.80±0.01 | 0.25±0.01 | 49.26±0.71 | 18.55±0.35 | 32.19±0.36 |
S5C5-200 | 1.06±0.03 | 34.70±1.46 | 2.03±0.14 | 1.53±0.05 | 7.69±2.03 | 0.07±0.08 | 0.17±0.05 | 52.99±0.63 | 17.08±0.27 | 29.93±0.36 |
S5C5-280 | 0.90±0.03 | 34.47±0.38 | 1.85±0.07 | 1.83±0.04 | 5.59±0.06 | 0.64±0.02 | 0.12±0.01 | 55.36±0.38 | 13.80±0.21 | 30.84±0.59 |
表1 原料和水热炭的工业分析和元素分析
Table 1 Proximate and ultimate analysis of raw materials and hydrochars
Sample | Ultimate analysis/% (d) | H/C | O/C | Proximate analysis/% (d) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N | C | H | S | O① | Ash | VM | FC | |||
SS-Raw | 3.51±0.09 | 20.38±0.47 | 3.04±0.06 | 1.92±0.07 | 16.87±0.01 | 1.79±0.07 | 0.62±0.01 | 54.28±0.26 | 45.59±0.24 | 0.13±0.02 |
CS-Raw | 1.07±0.05 | 53.70±0.30 | 2.83±0.04 | 2.93±0.04 | 12.96±0.06 | 0.63±0.01 | 0.18±0.01 | 26.51±0.37 | 18.79±0.56 | 54.70± 0.19 |
S10C0-240 | 1.65±0.04 | 9.99±0.06 | 1.18±0..06 | 0.59±0.07 | 6.65±0.15 | 1.42±0.06 | 0.50±0.01 | 79.94±0.38 | 17.34±0.79 | 2.72±0.41 |
S7C3-240 | 1.06±0.03 | 26.40±0.57 | 1.84±0.07 | 1.73±0.04 | 5.84±0.01 | 0.84±0.01 | 0.17±0.01 | 63.13±0.72 | 16.87±0.74 | 20.00±0.02 |
S5C5-240 | 0.98±0.05 | 34.84±0.81 | 2.15±0.11 | 2.17±0.05 | 6.61±0.99 | 0.74±0.06 | 0.14±0.02 | 53.25±0.39 | 15.85±0.73 | 30.90±0.34 |
S3C7-240 | 0.83±0.02 | 41.91±0.44 | 2.51±0.06 | 2.43±0.05 | 6.68±0.56 | 0.72±0.02 | 0.12±0.01 | 45.64±0.21 | 15.09±0.57 | 39.27±0.36 |
S0C10-240 | 0.66±0.04 | 55.03±0.83 | 2.20±0.06 | 2.38±0.06 | 10.18±2.89 | 0.48±0.01 | 0.14±0.04 | 29.55±0.56 | 13.63±0.88 | 56.82±1.44 |
S5C5-160 | 1.07±0.03 | 34.15±0.27 | 2.28±0.06 | 1.66±0.05 | 11.58±0.30 | 0.80±0.01 | 0.25±0.01 | 49.26±0.71 | 18.55±0.35 | 32.19±0.36 |
S5C5-200 | 1.06±0.03 | 34.70±1.46 | 2.03±0.14 | 1.53±0.05 | 7.69±2.03 | 0.07±0.08 | 0.17±0.05 | 52.99±0.63 | 17.08±0.27 | 29.93±0.36 |
S5C5-280 | 0.90±0.03 | 34.47±0.38 | 1.85±0.07 | 1.83±0.04 | 5.59±0.06 | 0.64±0.02 | 0.12±0.01 | 55.36±0.38 | 13.80±0.21 | 30.84±0.59 |
Sulphur species | Binding energy/eV |
---|---|
mercaptan | 162.2±0.2 |
sulfide | 163.3±0.2 |
thiophene | 164.1±0.2 |
sulfoxide | 166.0±0.2 |
sulfone | 168.5±0.5 |
sulfate | 170.0±0.5 |
表2 各形态硫的结合能[15-18]
Table 2 Binding energies of different sulphur species[15-18]
Sulphur species | Binding energy/eV |
---|---|
mercaptan | 162.2±0.2 |
sulfide | 163.3±0.2 |
thiophene | 164.1±0.2 |
sulfoxide | 166.0±0.2 |
sulfone | 168.5±0.5 |
sulfate | 170.0±0.5 |
Nitrogen functionality | Form | Binding energy/eV |
---|---|---|
pyridine-N | N-6 | 398.7±0.4 |
protein-N | N-A | 399.8±0.2 |
pyrrole-N | N-5 | 400.4±0.2 |
inorganic-N | Inorg-N | 402.0±0.5 |
quaternary-N | N-Q | 402.0±0.5 |
nitrogen oxide | N-X | 403.5±0.5 |
表3 各形态氮的结合能[21-24]
Table 3 Binding energies of nitrogen species[21-24]
Nitrogen functionality | Form | Binding energy/eV |
---|---|---|
pyridine-N | N-6 | 398.7±0.4 |
protein-N | N-A | 399.8±0.2 |
pyrrole-N | N-5 | 400.4±0.2 |
inorganic-N | Inorg-N | 402.0±0.5 |
quaternary-N | N-Q | 402.0±0.5 |
nitrogen oxide | N-X | 403.5±0.5 |
1 | Xie L F, Gou L, Wang Y Y, et al. Co-hydrothermal carbonization of sewage sludge and polyvinyl chloride for the production of high-quality solid fuel with low nitrogen content[J]. Science of the Total Environment, 2022, 804(15): 150094. |
2 | Cao Y C, Pawłowski A. Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: brief overview and energy efficiency assessment[J]. Renewable and Sustainable Energy Reviews, 2012, 16(3): 1657-1665. |
3 | He C, Giannis A, Wang J Y. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior[J]. Applied Energy, 2013, 111: 257-266. |
4 | Bardhan M, Novera T M, Tabassum M, et al. Co-hydrothermal carbonization of different feedstocks to hydrochar as potential energy for the future world: a review[J]. Journal of Cleaner Production, 2021, 298: 126734. |
5 | Zhao P T, Shen Y F, Ge S F, et al. Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment[J]. Applied Energy, 2014, 131: 345-367. |
6 | He C, Zhao J, Yang Y H, et al. Multiscale characteristics dynamics of hydrochar from hydrothermal conversion of sewage sludge under sub- and near-critical water[J]. Bioresource Technology, 2016, 211: 486-493. |
7 | Su H C, Zhou X Y, Zheng R D, et al. Hydrothermal carbonization of food waste after oil extraction pre-treatment: study on hydrochar fuel characteristics, combustion behavior, and removal behavior of sodium and potassium[J]. Science of the Total Environment, 2021, 754: 142192. |
8 | Saba A, Saha P, Reza M T. Co-hydrothermal carbonization of coal-biomass blend: influence of temperature on solid fuel properties[J]. Fuel Processing Technology, 2017, 167: 711-720. |
9 | Lang Q Q, Zhang B, Liu Z G, et al. Co-hydrothermal carbonization of corn stalk and swine manure: combustion behavior of hydrochar by thermogravimetric analysis[J]. Bioresource Technology, 2019, 271: 75-83. |
10 | Wang T F, Si B C, Gong Z J, et al. Co-hydrothermal carbonization of food waste-woody sawdust blend: interaction effects on the hydrochar properties and nutrients characteristics[J]. Bioresource Technology, 2020, 316: 123900. |
11 | Li W W, Tang Y G, Zhao Q J, et al. Sulfur and nitrogen in the high-sulfur coals of the Late Paleozoic from China[J]. Fuel, 2015, 155: 115-121. |
12 | Yang X Y, Wang B F, Song X T, et al. Co-hydrothermal carbonization of sewage sludge and coal slime with sulfuric acid for N, S doped hydrochar[J]. Journal of Cleaner Production, 2022, 354: 131615. |
13 | Chen F, Zhang M, Ma L L, et al. Nitrogen and sulfur codoped micro-mesoporous carbon sheets derived from natural biomass for synergistic removal of chromium(Ⅵ): adsorption behavior and computing mechanism[J]. Science of the Total Environment, 2020, 730: 138930. |
14 | Shen W Z, Fan W B. Nitrogen-containing porous carbons: synthesis and application[J]. J. Mater. Chem. A, 2013, 1(4): 999-1013. |
15 | Li P S, Hu Y, Yu W, et al. Investigation of sulfur forms and transformation during the co-combustion of sewage sludge and coal using X-ray photoelectron spectroscopy[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 1126-1132. |
16 | Zhang J, Zuo W, Tian Y, et al. Sulfur transformation during microwave and conventional pyrolysis of sewage sludge[J]. Environmental Science & Technology, 2017, 51(1): 709-717. |
17 | Wang Z X, Zhai Y B, Wang T F, et al. Effect of temperature on the sulfur fate during hydrothermal carbonization of sewage sludge[J]. Environmental Pollution, 2020, 260: 114067. |
18 | Wu J H, Liu J Z, Yuan S, et al. Sulfur transformation during hydrothermal dewatering of low rank coal[J]. Energy & Fuels, 2015, 29(10): 6586-6592. |
19 | Cheng S, Qiao Y, Huang J C, et al. Effect of alkali addition on sulfur transformation during low temperature pyrolysis of sewage sludge[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2253-2261. |
20 | Zhang Z M, Zhao Y, Wang T F. Spirulina hydrothermal carbonization: effect on hydrochar properties and sulfur transformation[J]. Bioresource Technology, 2020, 306: 123148. |
21 | Huang R X, Tang Y Z, Luo L. Thermochemistry of sulfur during pyrolysis and hydrothermal carbonization of sewage sludges[J]. Waste Management, 2021, 121: 276-285. |
22 | Zhuang X Z, Zhan H, Huang Y Q, et al. Denitrification and desulphurization of industrial biowastes via hydrothermal modification[J]. Bioresource Technology, 2018, 254: 121-129. |
23 | Wang Z Q, Huang J C, Wang B, et al. Co-hydrothermal carbonization of sewage sludge and model compounds of food waste: influence of mutual interaction on nitrogen transformation[J]. Science of the Total Environment, 2022, 807: 150997. |
24 | 王兴栋, 李春星, 尤甫天, 等. 污泥水热处理过程中氮元素的迁移转化[J]. 化工学报, 2018, 69(6): 2688-2696. |
Wang X D, Li C X, You F T, et al. Migration and transformation of nitrogen in sewage sludge during hydrothermal treatment[J]. CIESC Journal, 2018, 69(6): 2688-2696. | |
25 | Zhuang X Z, Huang Y Q, Song Y P, et al. The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment[J]. Bioresource Technology, 2017, 245: 463-470. |
26 | Zhuang X Z, Zhan H, Song Y P, et al. Insights into the evolution of chemical structures in lignocellulose and non-lignocellulose biowastes during hydrothermal carbonization (HTC)[J]. Fuel, 2019, 236(15): 960-974. |
27 | He C, Wang K, Yang Y H, et al. Effective nitrogen removal and recovery from dewatered sewage sludge using a novel integrated system of accelerated hydrothermal deamination and air stripping[J]. Environmental Science & Technology, 2015, 49(11): 6872-6880. |
28 | Wang R K, Lei H Y, Liu S Y, et al. The redistribution and migration mechanism of nitrogen in the hydrothermal co‑carbonization process of sewage sludge and lignocellulosic wastes[J]. Science of the Total Environment, 2021, 776(1): 145922. |
29 | Wang Z H, Li Q, Lin Z M, et al. Transformation of nitrogen and sulphur impurities during hydrothermal upgrading of low quality coals[J]. Fuel, 2016, 164(15): 254-261. |
30 | 姚明宇, 刘艳华, 车得福. 宜宾煤中氮的形态及其变迁规律研究[J]. 西安交通大学学报, 2003, 37(7): 759-763. |
Yao M Y, Liu Y H, Che D F. Investigation of nitrogen functionality in Yibin coal and its char[J]. Journal of Xi’an Jiaotong University, 2003, 37(7): 759-763. |
[1] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[2] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[3] | 陈宇豪, 陈晓平, 马吉亮, 梁财. 市政污泥回转窑焚烧气态污染物排放特性研究[J]. 化工学报, 2023, 74(5): 2170-2178. |
[4] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[5] | 罗欣宜, 冯超, 刘晶, 乔瑜. 污泥不同热处理工艺产物磷的浸出回收实验研究[J]. 化工学报, 2022, 73(9): 4034-4044. |
[6] | 沈嘉辉, 王侃宏, 郁达伟, 胡大洲, 魏源送. 游离氨调理污泥厌氧消化优化产甲烷过程与强化有机物释放[J]. 化工学报, 2022, 73(9): 4147-4155. |
[7] | 张军, 胡升, 顾菁, 袁浩然, 陈勇. 甲醇体系电镀污泥衍生磁性多金属材料催化糠醛加氢转化[J]. 化工学报, 2022, 73(7): 2996-3006. |
[8] | 宋超宇, 熊亚选, 张金花, 金宇贺, 药晨华, 王辉祥, 丁玉龙. 污泥焚烧炉渣基定型复合相变储热材料的制备和性能[J]. 化工学报, 2022, 73(5): 2279-2287. |
[9] | 陈冠益, 童图军, 李瑞, 王燕杉, 颜蓓蓓, 李宁, 侯立安. 热解时间对污泥生物炭活化过硫酸盐的影响研究[J]. 化工学报, 2022, 73(5): 2111-2119. |
[10] | 王燕杉, 朱小超, 宋英今, 李易航. 草屑厌氧消化预处理耦合水热炭化研究[J]. 化工学报, 2022, 73(2): 904-913. |
[11] | 张立, 吴建华, 崔舒惠, 严锋, 孙浩, 钱飞跃. PN/A颗粒污泥-固相反硝化组合工艺的菌群功能解析[J]. 化工学报, 2022, 73(11): 5128-5137. |
[12] | 成珊, 罗睿, 田红, 王振琦, 黄经春, 乔瑜. 水热碳化温度对污泥有机氮固液相迁移转化路径影响研究[J]. 化工学报, 2022, 73(11): 5220-5229. |
[13] | 张兰河, 汪露, 李梓萌, 唐宏, 郭静波, 贾艳萍, 张明爽. 电极超滤膜生物反应器处理阴离子表面活性剂废水[J]. 化工学报, 2022, 73(10): 4679-4691. |
[14] | 杨丽, 孙赟冬, 焦勇, 杨烨, 陈建标, 廖传华. 灰分在印染污泥热解气化中的协同催化机理[J]. 化工学报, 2021, 72(9): 4718-4729. |
[15] | 肖弦, 徐文昊, 沈亮, 王远鹏, 卢英华. 氧化石墨烯与剩余活性污泥聚合制备多孔碳材料及其电化学性能[J]. 化工学报, 2021, 72(7): 3869-3879. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 161
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 310
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||