化工学报 ›› 2022, Vol. 73 ›› Issue (2): 838-846.DOI: 10.11949/0438-1157.20211405
许雄飞1(),刘鹏龙1,张玮1(),许鑫1,张侃2,王俊文1
收稿日期:
2021-09-29
修回日期:
2021-11-03
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
张玮
作者简介:
许雄飞(1996—),男,硕士研究生,基金资助:
Xiongfei XU1(),Penglong LIU1,Wei ZHANG1(),Xin XU1,Kan ZHANG2,Junwen WANG1
Received:
2021-09-29
Revised:
2021-11-03
Online:
2022-02-05
Published:
2022-02-18
Contact:
Wei ZHANG
摘要:
针对甲醇制芳烃机理建模假设多、产物预测过程复杂、计算成本高等问题,提出了一种多元非线性回归分析的数据驱动建模方法。在两段法固定床反应系统中研究了反应压力、甲醇体积空速、一段中心温度、二段中心温度、装置运行时间、累计甲醇进料量及其交互作用对芳烃产物的影响。利用最小二乘法进行参数估计,建立四个六元二次非线性产物分布回归模型。测试结果表明,测试样本的总体决定性指标
中图分类号:
许雄飞, 刘鹏龙, 张玮, 许鑫, 张侃, 王俊文. 两段法固定床甲醇制芳烃产物预测多元非线性回归模型[J]. 化工学报, 2022, 73(2): 838-846.
Xiongfei XU, Penglong LIU, Wei ZHANG, Xin XU, Kan ZHANG, Junwen WANG. Multivariate nonlinear regression model of methanol to aromatics by two-state fixed bed for product prediction[J]. CIESC Journal, 2022, 73(2): 838-846.
工艺条件 | 上限 | 下限 |
---|---|---|
p/MPa | 0 | 0.8 |
τ/h-1 | 0.1 | 0.5 |
T1/℃ | 390 | 510 |
T2/℃ | 450 | 510 |
表1 两段式固定床MTA工艺条件的变动范围
Table 1 Change scope of process conditions of MTA in two-stage fixed bed
工艺条件 | 上限 | 下限 |
---|---|---|
p/MPa | 0 | 0.8 |
τ/h-1 | 0.1 | 0.5 |
T1/℃ | 390 | 510 |
T2/℃ | 450 | 510 |
序号 | p/MPa | τ/h-1 | T1/℃ | T2/℃ | TOS/min | M/g | w(甲醇)/% | w(C1)/% | w(烷烃)/% | w(烯烃)/% | w(芳烃)/% |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0.1 | 390.2 | 450 | 15118 | 2332.92 | 0.20 | 2.97 | 41.46 | 18.75 | 36.63 |
2 | 0 | 0.1 | 389 | 510 | 13751 | 1881.81 | 0.10 | 10.25 | 32.93 | 17.95 | 38.76 |
3 | 0 | 0.3 | 450.4 | 480 | 16075 | 3162.62 | 0.29 | 2.79 | 36.63 | 25.88 | 34.41 |
4 | 0 | 0.1 | 510 | 450 | 1443 | 476.19 | 0.01 | 48.30 | 16.59 | 3.58 | 31.53 |
5 | 0.22 | 0.4 | 426.1 | 460.5 | 5469 | 4354.77 | 0.13 | 4.00 | 34.16 | 8.23 | 53.48 |
6 | 0.23 | 0.4 | 422.5 | 490 | 5947 | 4990.51 | 0.24 | 5.13 | 37.21 | 12.25 | 45.16 |
7 | 0.24 | 0.2 | 423.4 | 462.6 | 7495 | 6180.13 | 0.08 | 4.67 | 36.75 | 8.91 | 49.59 |
? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
68 | 0.46 | 0.3 | 458.8 | 480 | 16445 | 14527.90 | 0.18 | 15.72 | 30.65 | 8.66 | 44.79 |
69 | 0.46 | 0.3 | 457.3 | 480 | 16643 | 14725.90 | 0.76 | 16.04 | 30.21 | 8.10 | 44.89 |
70 | 0.44 | 0.3 | 454.1 | 480 | 17608 | 13879.3 | 0.45 | 10.86 | 32.06 | 6.63 | 50.00 |
71 | 0 | 0.3 | 394.9 | 510 | 18112 | 14383.3 | 0.17 | 6.50 | 25.55 | 30.87 | 36.91 |
表2 MTA部分实验数据
Table 2 MTA partial experimental data
序号 | p/MPa | τ/h-1 | T1/℃ | T2/℃ | TOS/min | M/g | w(甲醇)/% | w(C1)/% | w(烷烃)/% | w(烯烃)/% | w(芳烃)/% |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0.1 | 390.2 | 450 | 15118 | 2332.92 | 0.20 | 2.97 | 41.46 | 18.75 | 36.63 |
2 | 0 | 0.1 | 389 | 510 | 13751 | 1881.81 | 0.10 | 10.25 | 32.93 | 17.95 | 38.76 |
3 | 0 | 0.3 | 450.4 | 480 | 16075 | 3162.62 | 0.29 | 2.79 | 36.63 | 25.88 | 34.41 |
4 | 0 | 0.1 | 510 | 450 | 1443 | 476.19 | 0.01 | 48.30 | 16.59 | 3.58 | 31.53 |
5 | 0.22 | 0.4 | 426.1 | 460.5 | 5469 | 4354.77 | 0.13 | 4.00 | 34.16 | 8.23 | 53.48 |
6 | 0.23 | 0.4 | 422.5 | 490 | 5947 | 4990.51 | 0.24 | 5.13 | 37.21 | 12.25 | 45.16 |
7 | 0.24 | 0.2 | 423.4 | 462.6 | 7495 | 6180.13 | 0.08 | 4.67 | 36.75 | 8.91 | 49.59 |
? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
68 | 0.46 | 0.3 | 458.8 | 480 | 16445 | 14527.90 | 0.18 | 15.72 | 30.65 | 8.66 | 44.79 |
69 | 0.46 | 0.3 | 457.3 | 480 | 16643 | 14725.90 | 0.76 | 16.04 | 30.21 | 8.10 | 44.89 |
70 | 0.44 | 0.3 | 454.1 | 480 | 17608 | 13879.3 | 0.45 | 10.86 | 32.06 | 6.63 | 50.00 |
71 | 0 | 0.3 | 394.9 | 510 | 18112 | 14383.3 | 0.17 | 6.50 | 25.55 | 30.87 | 36.91 |
模型 | 实验组数 | 参数维度 | F | |
---|---|---|---|---|
C1 | 57 | 28 | 65.74 | 1.87 |
烷烃 | 57 | 28 | 181.03 | 1.87 |
烯烃 | 57 | 28 | 86.13 | 1.87 |
芳烃 | 57 | 28 | 192.41 | 1.87 |
表3 模型统计学检验
Table 3 Model statistical tests
模型 | 实验组数 | 参数维度 | F | |
---|---|---|---|---|
C1 | 57 | 28 | 65.74 | 1.87 |
烷烃 | 57 | 28 | 181.03 | 1.87 |
烯烃 | 57 | 28 | 86.13 | 1.87 |
芳烃 | 57 | 28 | 192.41 | 1.87 |
MVR model | Train set | Test set | ||
---|---|---|---|---|
MSE | MSE | |||
C1 | 0.98 | 0.001 | 0.9 | 0.003 |
烷烃 | 0.99 | 0.0006 | 0.94 | 0.005 |
烯烃 | 0.99 | 0.0001 | 0.96 | 0.002 |
芳烃 | 0.99 | 0.001 | 0.97 | 0.005 |
总体 | 0.992 | 0.0007 | 0.9576 | 0.0037 |
表4 训练集和测试集比较
Table 4 Comparison of training and test sets
MVR model | Train set | Test set | ||
---|---|---|---|---|
MSE | MSE | |||
C1 | 0.98 | 0.001 | 0.9 | 0.003 |
烷烃 | 0.99 | 0.0006 | 0.94 | 0.005 |
烯烃 | 0.99 | 0.0001 | 0.96 | 0.002 |
芳烃 | 0.99 | 0.001 | 0.97 | 0.005 |
总体 | 0.992 | 0.0007 | 0.9576 | 0.0037 |
方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 0.72 | 27 | 0.027 | 12.15 | < 0.0001 |
A | 2.72×10-5 | 1 | 2.72×10-5 | 0.012 | 0.9121 |
B | 0.068 | 1 | 0.068 | 30.96 | < 0.0001 |
C | 0.021 | 1 | 0.021 | 9.48 | 0.0045 |
D | 3.75×10-4 | 1 | 3.75×10-4 | 0.17 | 0.6821 |
E | 8.65×10-3 | 1 | 8.65×10-3 | 3.95 | 0.0565 |
F | 8.44×10-3 | 1 | 8.44×10-3 | 3.85 | 0.0593 |
AB | 0.16 | 1 | 0.16 | 73.2 | < 0.0001 |
AC | 0.019 | 1 | 0.019 | 8.65 | 0.0064 |
AD | 1.83×10-4 | 1 | 1.83×10-4 | 0.084 | 0.7745 |
AE | 0.022 | 1 | 0.022 | 10.21 | 0.0034 |
AF | 0.014 | 1 | 0.014 | 6.59 | 0.0157 |
BC | 1.88×10-7 | 1 | 1.88×10-7 | 8.58×10-5 | 0.9927 |
BD | 2.71×10-3 | 1 | 2.71×10-3 | 1.24 | 0.2748 |
BE | 2.44×10-3 | 1 | 2.44×10-3 | 1.11 | 0.2999 |
BF | 3.02×10-3 | 1 | 3.02×10-3 | 1.38 | 0.2497 |
CD | 4.87×10-5 | 1 | 4.87×10-5 | 0.022 | 0.8825 |
CE | 6.59×10-4 | 1 | 6.59×10-4 | 0.3 | 0.5876 |
CF | 5.18×10-3 | 1 | 5.18×10-3 | 2.37 | 0.1349 |
DE | 3.05×10-4 | 1 | 3.05×10-4 | 0.14 | 0.7119 |
DF | 2.65×10-4 | 1 | 2.65×10-4 | 0.12 | 0.7305 |
EF | 2.37×10-3 | 1 | 2.37×10-3 | 1.08 | 0.3068 |
A2 | 0.013 | 1 | 0.013 | 6.16 | 0.0191 |
B2 | 3.92×10-5 | 1 | 3.92×10-5 | 0.018 | 0.8945 |
C2 | 2.59×10-3 | 1 | 2.59×10-3 | 1.18 | 0.2863 |
D2 | 0.011 | 1 | 0.011 | 5.12 | 0.0313 |
E2 | 8.00×10-3 | 1 | 8.00×10-3 | 3.65 | 0.0659 |
F2 | 1.91×10-4 | 1 | 1.91×10-4 | 0.087 | 0.7699 |
残差 | 0.064 | 29 | 2.19×10-3 | ||
总偏差 | 0.78 | 56 |
表5 芳烃模型方差分析
Table 5 Analysis of variance for aromatic model
方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 0.72 | 27 | 0.027 | 12.15 | < 0.0001 |
A | 2.72×10-5 | 1 | 2.72×10-5 | 0.012 | 0.9121 |
B | 0.068 | 1 | 0.068 | 30.96 | < 0.0001 |
C | 0.021 | 1 | 0.021 | 9.48 | 0.0045 |
D | 3.75×10-4 | 1 | 3.75×10-4 | 0.17 | 0.6821 |
E | 8.65×10-3 | 1 | 8.65×10-3 | 3.95 | 0.0565 |
F | 8.44×10-3 | 1 | 8.44×10-3 | 3.85 | 0.0593 |
AB | 0.16 | 1 | 0.16 | 73.2 | < 0.0001 |
AC | 0.019 | 1 | 0.019 | 8.65 | 0.0064 |
AD | 1.83×10-4 | 1 | 1.83×10-4 | 0.084 | 0.7745 |
AE | 0.022 | 1 | 0.022 | 10.21 | 0.0034 |
AF | 0.014 | 1 | 0.014 | 6.59 | 0.0157 |
BC | 1.88×10-7 | 1 | 1.88×10-7 | 8.58×10-5 | 0.9927 |
BD | 2.71×10-3 | 1 | 2.71×10-3 | 1.24 | 0.2748 |
BE | 2.44×10-3 | 1 | 2.44×10-3 | 1.11 | 0.2999 |
BF | 3.02×10-3 | 1 | 3.02×10-3 | 1.38 | 0.2497 |
CD | 4.87×10-5 | 1 | 4.87×10-5 | 0.022 | 0.8825 |
CE | 6.59×10-4 | 1 | 6.59×10-4 | 0.3 | 0.5876 |
CF | 5.18×10-3 | 1 | 5.18×10-3 | 2.37 | 0.1349 |
DE | 3.05×10-4 | 1 | 3.05×10-4 | 0.14 | 0.7119 |
DF | 2.65×10-4 | 1 | 2.65×10-4 | 0.12 | 0.7305 |
EF | 2.37×10-3 | 1 | 2.37×10-3 | 1.08 | 0.3068 |
A2 | 0.013 | 1 | 0.013 | 6.16 | 0.0191 |
B2 | 3.92×10-5 | 1 | 3.92×10-5 | 0.018 | 0.8945 |
C2 | 2.59×10-3 | 1 | 2.59×10-3 | 1.18 | 0.2863 |
D2 | 0.011 | 1 | 0.011 | 5.12 | 0.0313 |
E2 | 8.00×10-3 | 1 | 8.00×10-3 | 3.65 | 0.0659 |
F2 | 1.91×10-4 | 1 | 1.91×10-4 | 0.087 | 0.7699 |
残差 | 0.064 | 29 | 2.19×10-3 | ||
总偏差 | 0.78 | 56 |
1 | 代成义, 陈中顺, 杜康, 等. 甲醇制芳烃催化剂及相关工艺研究进展[J]. 化工进展, 2020, 39(12): 5029-5041. |
Dai C Y, Chen Z S, Du K, et al. Research progress of catalysts and related technologies for methanol to aromatics[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5029-5041. | |
2 | Niziolek A M, Onel O, Guzman Y A, et al. Biomass-based production of benzene, toluene, and xylenes via methanol: process synthesis and deterministic global optimization[J]. Energy & Fuels, 2016, 30(6): 4970-4998. |
3 | Meyers R A. Handbook of Petroleum Refining Processes[M]. New York: McGrawHill, 2004. |
4 | Kent J A. Kent and Riegel's Handbook of Industrial Chemistry and Biotechnology[M]. Boston, MA: Springer US, 2007. |
5 | Wittcoff H A, Reuben B G, Plotkin J S. Industrial Organic Chemicals[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. |
6 | Wei Z H, Xia T F, Liu M H, et al. Alkaline modification of ZSM-5 catalysts for methanol aromatization: the effect of the alkaline concentration[J]. Frontiers of Chemical Science and Engineering, 2015, 9(4): 450-460. |
7 | Xu S M, Zhang X X, Cheng D G, et al. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking[J]. Frontiers of Chemical Science and Engineering, 2018, 12(4): 780-789. |
8 | Gayubo A G, Valle B, Aguayo A T, et al. Attenuation of catalyst deactivation by cofeeding methanol for enhancing the valorisation of crude bio-oil[J]. Energy & Fuels, 2009, 23(8): 4129-4136. |
9 | 张宝珠. 甲醇转化制芳烃(MTA)反应的研究[D]. 大连: 大连理工大学, 2013. |
Zhang B Z. Study on methanol to aromatics (MTA) reaction[D]. Dalian: Dalian University of Technology, 2013. | |
10 | 冯丽梅, 徐亚荣, 张力, 等. 甲醇芳构化反应的热力学研究[J]. 石化技术与应用, 2017, 35(2): 101-105. |
Feng L M, Xu Y R, Zhang L, et al. Study on thermodynamics of methanol to aromatic reaction[J]. Petrochemical Technology & Application, 2017, 35(2): 101-105. | |
11 | 张贵泉, 白婷, 屈文婷, 等. 甲醇芳构化的研究 (Ⅰ): 反应热力学分析[J]. 石油化工, 2013, 42(2): 141-145. |
Zhang G Q, Bai T, Qu W T, et al. Aromatization of methanol (Ⅰ): Reaction thermodynamics[J]. Petrochemical Technology, 2013, 42(2): 141-145. | |
12 | 施丽丽, 方栩, 刘殿华, 等. Zn改性ZSM-5催化甲醇制芳烃反应动力学[J]. 天然气化工(C1化学与化工), 2017, 42(2): 40-44, 49. |
Shi L L, Fang X, Liu D H, et al. Kinetic model for reaction of methanol to aromatics on Zn modified ZSM-5 catalyst[J]. Natural Gas Chemical Industry, 2017, 42(2): 40-44, 49. | |
13 | 徐亚荣, 蒋斌波, 冯丽梅, 等. 甲醇制芳烃(MTA)反应动力学的研究[J]. 聚酯工业, 2019, 32(6): 7-12. |
Xu Y R, Jiang B B, Feng L M, et al. Study on reaction dynamic of methanol to aromatic[J]. Polyester Industry, 2019, 32(6): 7-12. | |
14 | Li N, Meng C, Liu D H. Deactivation kinetics with activity coefficient of the methanol to aromatics process over modified ZSM-5[J]. Fuel, 2018, 233: 283-290. |
15 | Li H, Li X G, Xiao W D. Deactivation kinetics of individual C6-C9 aromatics' generation from methanol over Zn and P co-modified HZSM-5[J]. RSC Advances, 2019, 9(39): 22327-22335. |
16 | Forester T R, Howe R F. In situ FTIR studies of methanol and dimethyl ether in ZSM-5[J]. Journal of the American Chemical Society, 1987, 109(17): 5076-5082. |
17 | Wang W, Seiler M, Hunger M. Role of surface methoxy species in the conversion of methanol to dimethyl ether on acidic zeolites investigated by in situ stopped-flow MAS NMR spectroscopy[J]. The Journal of Physical Chemistry B, 2001, 105(50): 12553-12558. |
18 | Wang W, Buchholz A, Seiler M, et al. Evidence for an initiation of the methanol-to-olefin process by reactive surface methoxy groups on acidic zeolite catalysts[J]. Journal of the American Chemical Society, 2003, 125(49): 15260-15267. |
19 | Lesthaeghe D, Van Speybroeck V, Marin G B, et al. Understanding the failure of direct C-C coupling in the zeolite-catalyzed methanol-to-olefin process[J]. Angewandte Chemie (International Ed. in English), 2006, 45(11): 1714-1719. |
20 | Olah G A, Klopman G, Schlosberg R H. Super acids(III):Protonation of alkanes and intermediacy of alkanonium ions, pentacoordinated carbon cations of CH5+ type. Hydrogen exchange, protolytic cleavage, hydrogen abstraction; polycondensation of methane, ethane, 2,2-dimethylpropane and 2,2,3,3-tetramethylbutane in FSO3H-SbF5[J]. Journal of the American Chemical Society, 1969, 91(12): 3261-3268. |
21 | Smith R D, Futrell J H. Evidence for complex formation in the reactions of CH3+ and CD3+ with CH3OH, CD3OD, and C2H5OH[J]. Chemical Physics Letters, 1976, 41(1): 64-67. |
22 | Olah G A, Doggweiler H, Felberg J D, et al. Onium Ylide chemistry(1): Bifunctional acid-base-catalyzed conversion of heterosubstituted methanes into ethylene and derived hydrocarbons. The onium ylide mechanism of the C1.fwdarw. C2 conversion[J]. Journal of the American Chemical Society, 1984, 106(7): 2143-2149. |
23 | Song W G, Haw J F, Nicholas J B, et al. Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34[J]. Journal of the American Chemical Society, 2000, 122(43): 10726-10727. |
24 | Gayubo A G, Arandes J M, Aguayo A T, et al. Contributions to the calculation of coke deactivation kinetics. A comparison of methods[J]. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1994, 55(3): 125-134. |
25 | Benito P L, Gayubo A G, Aguayo A T, et al. Deposition and characteristics of coke over a H-ZSM5 zeolite-based catalyst in the MTG process[J]. Industrial & Engineering Chemistry Research, 1996, 35(11): 3991-3998. |
26 | Benito P L, Gayubo A G, Aguayo A T, et al. Concentration-dependent kinetic model for catalyst deactivation in the MTG process[J]. Industrial & Engineering Chemistry Research, 1996, 35(1): 81-89. |
27 | Aguayo A T, Gayubo A G, Ortega J, et al. Catalyst deactivation by coking in the MTG process in fixed and fluidized bed reactors[J]. Catalysis Today, 1997, 37(3): 239-248. |
28 | Gayubo A G, Aguayo A T, Benito P L, et al. Reactivation of the HZSM-5 zeolite-based catalyst used in the MTG process[J]. AIChE Journal, 1997, 43(6): 1551-1558. |
29 | 薛永飞, 王雅琳, 孙备, 等. 基于改进状态转移算法的串级平推流反应器动力学参数估计[J]. 化工学报, 2019, 70(2): 607-616. |
Xue Y F, Wang Y L, Sun B, et al. Improved state transfer algorithm-based kinetics parameter estimation for cascaded plug flow reactors[J]. CIESC Journal, 2019, 70(2): 607-616. | |
30 | 姚源朝, 仇鹏, 许建良, 等. 基于混合模型的气流床气化炉建模[J]. 化工学报, 2021, 72(5): 2727-2734. |
Yao Y C, Qiu P, Xu J L, et al. Modeling of entrained-bed gasifier based on hybrid model[J]. CIESC Journal, 2021, 72(5): 2727-2734. | |
31 | 葛宜元. 试验设计方法与Design-Expert软件应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2015. |
Ge Y Y. Experiment Design Method and Application of Design-Expert Software[M]. Harbin: Harbin Institute of Technology Press, 2015. | |
32 | 陈昊, 杨二龙, 纪大伟, 等. 基于多元回归的套管钢含CO2/H2S腐蚀速率预测[J]. 石油化工高等学校学报, 2021, 34(1): 58-62. |
Chen H, Yang E L, Ji D W, et al. Prediction of corrosion rate of casing steel containing CO2/H2S based on multiple linear regression[J]. Journal of Petrochemical Universities, 2021, 34(1): 58-62. | |
33 | 朱炳辰. 催化反应工程[M]. 北京: 中国石化出版社, 2001. |
Zhu B C. Catalytic Reaction Engineering[M]. Beijing: China Petrochemical Press, 2001. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[5] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[6] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[7] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[8] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[9] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[10] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[11] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[12] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[13] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[14] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[15] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||