化工学报 ›› 2022, Vol. 73 ›› Issue (5): 2222-2232.DOI: 10.11949/0438-1157.20211847
徐银龙1,2(),郑文杰1,2(),王琳1,2,薛中飞1,2,谢毅鑫1,2
收稿日期:
2021-12-30
修回日期:
2022-03-28
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
郑文杰
作者简介:
徐银龙(1998—),男,硕士研究生,基金资助:
Yinlong XU1,2(),Wenchieh CHENG1,2(),Lin WANG1,2,Zhongfei XUE1,2,Yixin XIE1,2
Received:
2021-12-30
Revised:
2022-03-28
Online:
2022-05-05
Published:
2022-05-24
Contact:
Wenchieh CHENG
摘要:
已有研究表明,酶诱导碳酸盐沉淀法在加固软黏土和钙质砂方面有很大潜力。然而,这一方法在稳定、固化重金属离子方面的应用却十分有限。此外,在铜离子作用下,碳酸盐沉淀形态及其处理效率的关系尚不清楚。提出一种壳聚糖联合酶诱导碳酸盐沉淀法进行铜废水处理,结果表明此方法可以显著提高脲酶活性,保证尿素能够充分得到水解。通过一系列试管试验和模拟试验发现,较高与较低的脲酶活性均会劣化处理效率。当pH高达9时溶液会大量产生铜氨络合物,降低处理效率。壳聚糖和钙源的添加能够有效抑制pH的升高,防止铜离子对脲酶活性的抑制作用,具有良好的应用前景。
中图分类号:
徐银龙, 郑文杰, 王琳, 薛中飞, 谢毅鑫. 壳聚糖联合酶诱导碳酸盐沉淀处理铜废水的劣化现象和强化机理研究[J]. 化工学报, 2022, 73(5): 2222-2232.
Yinlong XU, Wenchieh CHENG, Lin WANG, Zhongfei XUE, Yixin XIE. Implication and enhancement mechanism of chitosan-assisted enzyme- induced carbonate precipitation for copper wastewater treatment[J]. CIESC Journal, 2022, 73(5): 2222-2232.
试验方案 | 铜离子浓度/(mmol/L) | 氯化钙浓度/(mmol/L) | 醋酸钙浓度/(mmol/L) | 尿素浓度/(mmol/L) | 脲酶浓度/(g/L) | 壳聚糖浓度/(g/L) |
---|---|---|---|---|---|---|
a | 5、10、30、40、50 | — | — | 500 | 3 | 0、2、4 |
b | 5、10、30、40、50 | — | 250 | 500 | 3 | 2、4 |
c | 5、10、30、40、50 | 250 | — | 500 | 3 | 2、4 |
表1 试管试验方案
Table 1 Testing scheme applied to the present work
试验方案 | 铜离子浓度/(mmol/L) | 氯化钙浓度/(mmol/L) | 醋酸钙浓度/(mmol/L) | 尿素浓度/(mmol/L) | 脲酶浓度/(g/L) | 壳聚糖浓度/(g/L) |
---|---|---|---|---|---|---|
a | 5、10、30、40、50 | — | — | 500 | 3 | 0、2、4 |
b | 5、10、30、40、50 | — | 250 | 500 | 3 | 2、4 |
c | 5、10、30、40、50 | 250 | — | 500 | 3 | 2、4 |
模拟方案 | 铜离子浓度/(mmol/L) | 铵根离子浓度/(mmol/L) | 碳酸根离子浓度/(mmol/L) | 氯化钙浓度/(mmol/L) | 醋酸钙浓度/(mmol/L) |
---|---|---|---|---|---|
无钙源模拟 | 5~50 | 实测浓度 | 实测浓度 | — | — |
5~100 | 100~700 | 50~350 | — | — | |
醋酸钙模拟 | 5~100 | 100~700 | 50~350 | — | 250 |
氯化钙模拟 | 5~100 | 100~700 | 50~350 | 250 | — |
表2 数值模拟输入参数
Table 2 Simulation scheme applied to the present work
模拟方案 | 铜离子浓度/(mmol/L) | 铵根离子浓度/(mmol/L) | 碳酸根离子浓度/(mmol/L) | 氯化钙浓度/(mmol/L) | 醋酸钙浓度/(mmol/L) |
---|---|---|---|---|---|
无钙源模拟 | 5~50 | 实测浓度 | 实测浓度 | — | — |
5~100 | 100~700 | 50~350 | — | — | |
醋酸钙模拟 | 5~100 | 100~700 | 50~350 | — | 250 |
氯化钙模拟 | 5~100 | 100~700 | 50~350 | 250 | — |
图7 考虑添加钙源时壳聚糖联合酶诱导碳酸盐沉淀方法铵根离子浓度和pH随铜离子浓度变化
Fig.7 NH4+ and pH versus Cu2+ concentration using the chitosan-assisted EICP method (with calcium source addition)
图8 考虑添加钙源壳聚糖联合酶诱导碳酸盐沉淀方法处理效率随铜离子浓度变化
Fig.8 Treatment efficiency versus Cu2+ concentration using the chitosan-assisted EICP method (with calcium source addition)
1 | 郑喜珅, 鲁安怀, 高翔, 等. 土壤中重金属污染现状与防治方法[J]. 土壤与环境, 2002, 11(1): 79-84. |
Zheng X S, Lu A H, Gao X, et al. Contamination of heavy metals in soil present situation and method[J]. Soil and Environmental Sciences, 2002, 11(1): 79-84. | |
2 | Al-Saydeh S A, El-Naas M H, Zaidi S J. Copper removal from industrial wastewater: a comprehensive review[J]. Journal of Industrial and Engineering Chemistry, 2017, 56: 35-44. |
3 | 周鹏飞, 张世文, 罗明, 等. 矿业废弃地不同生态修复模式下植物多样性及重金属富集迁移特征[J]. 环境科学, 2022, 43(2): 985-994. |
Zhou P F, Zhang S W, Luo M, et al. Characteristics of plant diversity and heavy metal enrichment and migration under different ecological restoration modes in abandoned mining areas[J]. Environmental Science, 2022, 43(2): 985-994. | |
4 | Chen H M, Zheng C R, Tu C. Heavy metal pollution in soils in China: status and countermeasures[J]. Ambio, 1999, 28(2): 130-134. |
5 | 李想, 吴雅琴, 张高旗, 等. 含铜废水治理及资源化利用技术新进展[J]. 环境科学与技术, 2018, 41(8): 34-40, 86. |
Li X, Wu Y Q, Zhang G Q, et al. Advanced progress in treatment and resource utilization of copper containing wastewater[J]. Environmental Science & Technology, 2018, 41(8): 34-40, 86. | |
6 | 孙潇昊, 缪林昌, 童天志, 等. 微生物诱导碳酸镁沉淀试验研究[J]. 岩土工程学报, 2018, 40(7): 1309-1315. |
Sun X H, Miao L C, Tong T Z, et al. Comparison between microbiologically-induced calcium carbonate precipitation and magnesium carbonate precipitation[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1309-1315. | |
7 | Ahenkorah I, Rahman M M, Karim M R, et al. Enzyme induced calcium carbonate precipitation and its engineering application: a systematic review and meta-analysis[J]. Construction and Building Materials, 2021, 308: 125000. |
8 | Xue Z F, Cheng W C, Wang L, et al. Effects of bacterial inoculation and calcium source on microbial-induced carbonate precipitation for lead remediation[J]. Journal of Hazardous Materials, 2022, 426: 128090. |
9 | 陆兆文, 钱春香, 许燕波. 微生物菌粉与菌液矿化固结Zn2+的研究与对比[J]. 环境科学与技术, 2012, 35(S2): 58-61. |
Lu Z W, Qian C X, Xu Y B. Study and comparison of mineralized consolidation Zn2+ between bacteria and powder[J]. Environmental Science & Technology, 2012, 35(S2): 58-61. | |
10 | 钱春香, 许燕波, 胡黎明, 等. 一种微生物固结污染体系中Cu2+的研究[J]. 环境科学与技术, 2011, 34(S2): 33-36. |
Qian C X, Xu Y B, Hu L M, et al. Study on Cu2+ in contaminated system mineralized by bacteria[J]. Environmental Science & Technology, 2011, 34(S2): 33-36. | |
11 | Nam I H, Roh S B, Park M J, et al. Immobilization of heavy metal contaminated mine wastes using Canavalia ensiformis extract[J]. CATENA, 2016, 136: 53-58. |
12 | Moghal A A B, Lateef M A, Abu Sayeed Mohammed S, et al. Heavy metal immobilization studies and enhancement in geotechnical properties of cohesive soils by EICP technique[J]. Applied Sciences, 2020, 10(21): 7568. |
13 | Moghal A A B, Lateef M A, Mohammed S A S, et al. Efficacy of enzymatically induced calcium carbonate precipitation in the retention of heavy metal ions[J]. Sustainability, 2020, 12(17): 7019. |
14 | Wang L, Cheng W C, Xue Z F. The effect of calcium source on Pb and Cu remediation using enzyme-induced carbonate precipitation[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 849631. |
15 | Maroney M J, Ciurli S. Nonredox nickel enzymes[J]. Chemical Reviews, 2014, 114(8): 4206-4228. |
16 | 王丽萍, 胥义, 郑艺华, 等. 采用微量热法研究重金属离子对脲酶催化水解反应的影响[J]. 高等学校化学学报, 2012, 33(8): 1771-1776. |
Wang L P, Xu Y, Zheng Y H, et al. Urease-catalyzed reactions inhibited by heavy metals ion with micro-calorimetry[J]. Chemical Journal of Chinese Universities, 2012, 33(8): 1771-1776. | |
17 | 滕应, 骆永明, 李振高. 土壤重金属复合污染对脲酶、磷酸酶及脱氢酶的影响[J]. 中国环境科学, 2008, 28(2): 147-152. |
Teng Y, Luo Y M, Li Z G. Kinetics characters of soil urease, acid phosphotase and dehydrogenase activities in soil contaminated with mixed heavy metals[J]. China Environmental Science, 2008, 28(2): 147-152. | |
18 | 李嘉辰, 俞斌, 王琦, 等. 分子模拟研究壳聚糖-氮化硼纳米管封装及输运阿霉素[J]. 化工学报, 2020, 71(1): 354-360. |
Li J C, Yu B, Wang Q, et al. Molecular simulation on doxorubicin encapsulation and transport by chitosanboron nitride nanotubes[J]. CIESC Journal, 2020, 71(1): 354-360. | |
19 | 汪玉庭, 刘玉红, 张淑琴. 甲壳素、壳聚糖的化学改性及其衍生物应用研究进展[J]. 功能高分子学报, 2002, 15(1): 107-114. |
Wang Y T, Liu Y H, Zhang S Q. Advances in chemical modification and application of chitin, chitosan and their derivatives[J]. Journal of Functional Polymers, 2002, 15(1): 107-114. | |
20 | Rabea E I, Badawy M E T, Stevens C V, et al. Chitosan as antimicrobial agent: applications and mode of action[J]. Biomacromolecules, 2003, 4(6): 1457-1465. |
21 | Hadrami A EI, Adam L R, Hadrami I EI, et al. Chitosan in plant protection[J]. Marine Drugs, 2010, 8(4): 968-987. |
22 | Liu Y G, Li W M, Wei C B, et al. Preparation of a xanthine sensor based on the immobilization of xanthine oxidase on a chitosan modified electrode by cross-linking[J]. Chinese Journal of Chemistry, 2012, 30(7): 1601-1604. |
23 | 董海丽, 任晓燕. 磁性壳聚糖微球对大豆乳清废水中蛋白质的吸附作用[J]. 食品科学, 2007, 28(7): 205-207. |
Dong H L, Ren X Y. Adsorption effects of magnetic chitosan microsphere on protein in soy whey wastewater[J]. Food Science, 2007, 28(7): 205-207. | |
24 | 冯颖, 崔倩, 解玉鞠, 等. 磁性壳聚糖微球的改性研究进展及其在水处理中的应用[J/OL]. 复合材料学报: [2021-12-15]. . |
Feng Y, Cui Q, Xie Y J, et al. Research progress on modification of magnetic chitosan microspheres and its application in water treatment[J/OL]. Acta Materiae Compositae Sinica: [2021-12-15]. . | |
25 | Nawarathna T H K, Nakashima K, Kawasaki S. Chitosan enhances calcium carbonate precipitation and solidification mediated by bacteria[J]. International Journal of Biological Macromolecules, 2019, 133: 867-874. |
26 | Hamdan N, Zhao Z, Mujica M, et al. Hydrogel-assisted enzyme-induced carbonate mineral precipitation[J]. Journal of Materials in Civil Engineering, 2016, 28(10): 04016089. |
27 | 吴敏, 高玉峰, 何稼, 等. 大豆脲酶诱导碳酸钙沉积与黄原胶联合防风固沙室内试验研究[J]. 岩土工程学报, 2020, 42(10): 1914-1921. |
Wu M, Gao Y F, He J, et al. Laboratory study on use of soybean urease-induced calcium carbonate precipitation with xanthan gum for stabilization of desert sand against wind erosion[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1914-1921. | |
28 | Whiffin V S. Microbial CaCO3 precipitation for the production of biocement[D]. Perth: Morduch University, 2004. |
29 | Chaperon S, Sauvé S. Toxicity interactions of cadmium, copper, and lead on soil urease and dehydrogenase activity in relation to chemical speciation[J]. Ecotoxicology and Environmental Safety, 2008, 70(1): 1-9. |
30 | 梁高杰, 王丹丹, 谢巧玲, 等. 氧肟酸型聚合物制备及其在铜氨废水处理中的应用研究[J]. 应用化工, 2021, 50(12): 3304-3308. |
Liang G J, Wang D D, Xie Q L, et al. Synthesis of hydroxamic polymer and application on the copper ammonia wastewater treatment[J]. Applied Chemical Industry, 2021, 50(12): 3304-3308. | |
31 | Duarte-Nass C, Rebolledo K, Valenzuela T, et al. Application of microbe-induced carbonate precipitation for copper removal from copper-enriched waters: challenges to future industrial application[J]. Journal of Environmental Management, 2020, 256: 109938. |
32 | 余木火, 周征龙, 武秀阁, 等. 壳聚糖醋酸水溶液粘度行为的研究[J]. 高分子材料科学与工程, 1991, 7(6): 97-101. |
Yu M H, Zhou Z L, Wu X G, et al. Study on viscometric behaviours of chitosan-HAc aqueous solution[J]. Polymer Materials Science & Engineering, 1991, 7(6): 97-101. | |
33 | 宋艳艳, 孔维宝, 宋昊, 等. 磁性壳聚糖微球的研究进展[J]. 化工进展, 2012, 31(2): 345-354. |
Song Y Y, Kong W B, Song H, et al. Reseach progress in magnetic chitosan microspheres[J]. Chemical Industry and Engineering Progress, 2012, 31(2): 345-354. | |
34 | Juang R S, Wu F C, Tseng R L. Use of chemically modified chitosan beads for sorption and enzyme immobilization[J]. Advances in Environmental Research, 2002, 6(2): 171-177. |
35 | 张玉亭, 吕彤. 胶体与界面化学[M]. 北京: 中国纺织出版社, 2008: 210. |
Zhang Y T, Lyu T. Colloid and Interface Chemistry[M]. Beijing: China Textile & Apparel Press, 2008: 210. | |
36 | Nilsen-Nygaard J, Strand S P, Vårum K M, et al. Chitosan: gels and interfacial properties[J]. Polymers, 2015, 7(3): 552-579. |
37 | Nie J, Wang Z, Hu Q. Chitosan hydrogel structure modulated by metal ions[J]. Scientific Reports, 2016, 6: 36005. |
[1] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[2] | 邓璐, 巨晓洁, 张文杰, 谢锐, 汪伟, 刘壮, 潘大伟, 褚良银. 微流控法可控制备放射性壳聚糖栓塞微球[J]. 化工学报, 2023, 74(4): 1781-1794. |
[3] | 付家崴, 陈帅帅, 方凯伦, 蒋新. 微反应器共沉淀反应制备铜锰催化剂[J]. 化工学报, 2023, 74(2): 776-783. |
[4] | 李承威, 骆华勇, 张铭轩, 廖鹏, 方茜, 荣宏伟, 王竞茵. 氢氧化镧交联壳聚糖微球的微流控制备及其除磷性能[J]. 化工学报, 2022, 73(9): 3929-3939. |
[5] | 欧阳萍, 张睿, 周剑, 刘海燕, 刘植昌, 徐春明, 孟祥海. 铜铝双金属复合离子液体的电化学行为及电沉积铜机理[J]. 化工学报, 2022, 73(7): 3212-3221. |
[6] | 张殷豪, 詹菲, 李城序, 于畅, 邱介山. 铵钒青铜基浓差流动电池的盐差发电性能研究[J]. 化工学报, 2022, 73(2): 857-864. |
[7] | 周微, 王福烨, 贺宁, 于海斌, 马新宾, 刘家旭. Cu/SSZ-13催化剂脱硝活性中心与催化性能构效关系的研究[J]. 化工学报, 2022, 73(2): 672-680. |
[8] | 方凯伦, 陈帅帅, 付家崴, 蒋新. 微反应器研究陈化过程对铜锰催化剂的影响[J]. 化工学报, 2022, 73(10): 4438-4447. |
[9] | 李海涛, 孟平凡, 张因, 武瑞芳, 黄鑫, 班丽君, 韩旭东, 席琳, 王兴皓, 田博辉, 赵永祥. SiO2网络限域CuO纳米晶的甲醛乙炔化性能研究[J]. 化工学报, 2021, 72(9): 4708-4717. |
[10] | 冯晓博, 刘天龙, 赵小燕, 曹景沛. 合成气与二甲醚为原料直接制乙醇催化反应研究进展[J]. 化工学报, 2021, 72(8): 3958-3967. |
[11] | 于丰收, 张鲁华. Cu基纳米材料电催化还原CO2的结构-性能关系[J]. 化工学报, 2021, 72(4): 1815-1824. |
[12] | 赵心语, 耿宇昊, 田震昊, 徐建鸿. CdSe@ZnS量子点荧光传感器在水体铜离子污染检测中的应用[J]. 化工学报, 2021, 72(2): 1142-1148. |
[13] | 孙晓明, 沙琪昊, 王陈伟, 周道金. 用于甲醇重整制氢的铜基催化剂研究进展[J]. 化工学报, 2021, 72(12): 5975-6001. |
[14] | 裴俊华, 杨亮, 汪鑫, 胡晗, 刘道平. 泡沫铜强化甲烷水合物生成动力学实验研究[J]. 化工学报, 2021, 72(11): 5751-5760. |
[15] | 冶雪艳, 李铮, 罗冉, 宋亚霖, 崔瑞娟. 地下水人工补给过程中流速对多孔介质胶体堵塞的影响机理[J]. 化工学报, 2021, 72(11): 5520-5532. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||