化工学报 ›› 2022, Vol. 73 ›› Issue (5): 2206-2221.DOI: 10.11949/0438-1157.20211779
王敏1(),程金兰1(
),李鑫1,2,陆晶晶1,尹崇鑫1,3,戴红旗1
收稿日期:
2021-12-17
修回日期:
2022-04-01
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
程金兰
作者简介:
王敏(1996—),女,硕士研究生,基金资助:
Min WANG1(),Jinlan CHENG1(
),Xin LI1,2,Jingjing LU1,Chongxin YIN1,3,Hongqi DAI1
Received:
2021-12-17
Revised:
2022-04-01
Online:
2022-05-05
Published:
2022-05-24
Contact:
Jinlan CHENG
摘要:
系统探讨了酸性助水溶剂对甲苯磺酸(p-toluenesulfonic acid,TSA)和马来酸(maleic acid,MA)分离桉木各组分的工艺过程,并对其中木质素脱除机理进行了研究。通过分析对比两种优化后的工艺发现:(1)两种酸性助水溶剂都可以高效脱除木质素,TSA木质素脱除率为67.94%,MA为65.14%;(2)在相同质量分数下,TSA的木质素脱除率比MA更高;(3)在温和条件下,TSA木质素的β-芳醚键含量比MA的高,随着反应条件的加剧,TSA和MA处理后木质素产品中β-芳醚键含量逐渐减少;(4)两种酸性助水溶剂处理后,纤维素保留率都较高,可保持90%以上;但是半纤维素的降解程度随着反应条件的加剧而增加;(5)酸性助水溶剂质量分数越高,在疏水表面的接触角越小,对木质素的助溶作用越明显,脱除木质素效率越高,溶液中木质素聚集体的粒径越小。综上所述,酸性助水溶剂对木质素的脱除基于润湿溶解、木质素芳醚键断裂、半纤维素降解等的综合作用。相关研究可为后续实现温和条件脱木质素工艺优化及机理提供参考。
中图分类号:
王敏, 程金兰, 李鑫, 陆晶晶, 尹崇鑫, 戴红旗. 酸性助水溶剂脱除木质素机理分析[J]. 化工学报, 2022, 73(5): 2206-2221.
Min WANG, Jinlan CHENG, Xin LI, Jingjing LU, Chongxin YIN, Hongqi DAI. Delignification mechanism study of acid hydrotropes[J]. CIESC Journal, 2022, 73(5): 2206-2221.
水平 | 质量分数/% | 反应温度/℃ | 反应时间/min |
---|---|---|---|
1 | 25 | 70 | 30 |
2 | 25 | 80 | 60 |
3 | 25 | 90 | 90 |
4 | 40 | 70 | 60 |
5 | 40 | 80 | 90 |
6 | 40 | 90 | 30 |
7 | 55 | 70 | 90 |
8 | 55 | 80 | 30 |
9 | 55 | 90 | 60 |
表1 TSA实验因素设计
Table 1 TSA experiment factors design
水平 | 质量分数/% | 反应温度/℃ | 反应时间/min |
---|---|---|---|
1 | 25 | 70 | 30 |
2 | 25 | 80 | 60 |
3 | 25 | 90 | 90 |
4 | 40 | 70 | 60 |
5 | 40 | 80 | 90 |
6 | 40 | 90 | 30 |
7 | 55 | 70 | 90 |
8 | 55 | 80 | 30 |
9 | 55 | 90 | 60 |
水平 | 质量分数/% | 反应温度/℃ | 反应时间/min |
---|---|---|---|
1 | 40 | 100 | 60 |
2 | 40 | 120 | 120 |
3 | 40 | 140 | 180 |
4 | 55 | 100 | 120 |
5 | 55 | 120 | 180 |
6 | 55 | 140 | 60 |
7 | 70 | 100 | 180 |
8 | 70 | 120 | 60 |
9 | 70 | 140 | 120 |
表2 MA实验因素设计
Table 2 MA experiment factors design
水平 | 质量分数/% | 反应温度/℃ | 反应时间/min |
---|---|---|---|
1 | 40 | 100 | 60 |
2 | 40 | 120 | 120 |
3 | 40 | 140 | 180 |
4 | 55 | 100 | 120 |
5 | 55 | 120 | 180 |
6 | 55 | 140 | 60 |
7 | 70 | 100 | 180 |
8 | 70 | 120 | 60 |
9 | 70 | 140 | 120 |
化学成分 | 含量/% |
---|---|
灰分 | 0.3±0.01 |
苯醇抽提物 | 0.57±0.03 |
酸溶木质素 | 4.09±0.02 |
酸不溶木质素 | 22.89±0.1 |
葡聚糖 | 36.54±1.1 |
木聚糖 | 14.55±0.8 |
表3 桉木片原料化学成分
Table 3 Chemical composition of eucalyptus chip material
化学成分 | 含量/% |
---|---|
灰分 | 0.3±0.01 |
苯醇抽提物 | 0.57±0.03 |
酸溶木质素 | 4.09±0.02 |
酸不溶木质素 | 22.89±0.1 |
葡聚糖 | 36.54±1.1 |
木聚糖 | 14.55±0.8 |
样品编号 | 固体组分 | 液体组分 | |||||||
---|---|---|---|---|---|---|---|---|---|
灰分/% | 得率/% | 酸溶木质素/% | 酸不溶木质素/% | 木质素脱除率/% | 葡聚糖/% | 木聚糖/% | 木糖/(g/L) | ||
P25T70t30 | 0.34±0.02 | 93.59±0.20 | 4.72(96.08)±0.02 | 22.15(90.57)±0.27 | 9.43±1.22 | 41.42(99.17)±1.00 | 13.47(86.62)±0.33 | 1.70±0.05 | |
P40T70t60 | 0.25±0.00 | 72.56±0.18 | 4.47(83.09)±0.00 | 19.05(68.90)±0.59 | 31.30±0.20 | 43.78(96.50)±0.97 | 12.57(71.34)±0.99 | 2.68±0.04 | |
P25T80t60 | 0.24±0.04 | 80.02±0.20 | 3.56(78.35)±0.02 | 18.94(65.21)±0.30 | 33.79±0.39 | 42.42(98.86)±0.30 | 10.56(58.07)±0.78 | 4.67±0.02 | |
P55T80t30 | 0.17±0.00 | 75.49±0.04 | 3.08(54.94)±0.05 | 16.29(53.20)±0.68 | 47.80±1.03 | 46.59(99.54)±0.78 | 8.52(42.94)±0.88 | 5.45±0.03 | |
P55T70t90 | 0.09±0.00 | 73.36±0.15 | 2.55(45.89)±0.01 | 15.14(50.57)±0.79 | 47.43±1.08 | 56.49(102.89)±0.39 | 6.78(37.05)±0.90 | 6.78±0.02 | |
P40T90t30 | 0.06±0.00 | 70.97±0.13 | 2.08(29.76)±0.03 | 13.54(46.95)±0.20 | 55.05±1.09 | 58.39(100.90)±0.65 | 6.88(35.95)±0.20 | 10.07±0.03 | |
P40T80t90 | 0.08±0.1 | 69.38±0.07 | 1.56(18.92)±0.00 | 13.48(42.80)±0.01 | 57.37±0.98 | 60.30(105.48)±0.76 | 5.15(25.60)±0.44 | 13.92±0.06 | |
P25T90t90 | 0.09±0.03 | 63.73±0.07 | 1.01(8.58)±0.04 | 12.95(37.29)±0.30 | 62.91±0.79 | 59.61(102.34)±0.89 | 5.25(24.81)±0.77 | 14.78±0.08 | |
P55T90t60 | 0.06±0.02 | 58.50±0.20 | 0.53(7.59)±0.01 | 12.54(32.06)±1.49 | 67.94±0.90 | 72.14(98.73)±0.45 | 4.08(16.42)±0.02 | 15.08±0.10 | |
M40T100t60 | 0.31±0.01 | 91.63±0.19 | 4.89(96.28)±0.10 | 22.17(88.76)±0.67 | 11.24±0.76 | 46.77(94.49)±1.29 | 12.33(77.65)±1.08 | 1.89±0.01 | |
M55T100t120 | 0.28±0.04 | 74.50±0.03 | 4.38(83.56)±0.03 | 20.58(75.99)±0.40 | 24.01±1.02 | 56.59(95.59)±0.45 | 9.52(58.73)±0.99 | 7.50±0.02 | |
M70T120t60 | 0.23±0.00 | 72.24±0.16 | 3.68(59.27)±0.02 | 19.05(56.33)±0.30 | 43.67±1.07 | 59.00(93.72)±0.64 | 8.51(45.07)±0.97 | 12.03±0.01 | |
M40T120t120 | 0.18±0.05 | 71.01±0.16 | 3.04(51.57)±0.04 | 18.16(53.46)±0.99 | 46.54±1.11 | 49.10(95.43)±0.82 | 9.24(37.56)±0.76 | 13.92±0.04 | |
M55T140t60 | 0.19±0.00 | 67.98±0.18 | 2.74(49.04)±0.03 | 17.80(49.90)±0.39 | 50.10±0.20 | 62.52(95.61)±0.84 | 7.65(35.74)±0.56 | 15.20±0.02 | |
M70T100t180 | 0.02±0.01 | 65.60±0.09 | 2.03(47.22)±0.01 | 16.06(47.80)±1.01 | 52.20±0.49 | 56.66(93.97)±0.39 | 6.54(32.25)±0.88 | 15.98±0.07 | |
M55T120t180 | 0.05±0.01 | 63.81±0.19 | 1.78(35.07)±0.04 | 15.68(45.04)±0.20 | 54.96±0.59 | 66.73(94.71)±0.59 | 6.57(28.38)±0.99 | 16.06±0.03 | |
M40T140t180 | 0.03±0.01 | 62.11±0.11 | 1.34(28.42)±0.02 | 13.21(36.33)±0.30 | 63.67±0.50 | 59.66(91.28)±0.58 | 6.44(26.17)±0.30 | 16.60±0.80 | |
M70T140t120 | 0.06±0.03 | 60.58±0.13 | 0.67(13.68)±0.01 | 12.75(34.86)±0.22 | 65.14±1.02 | 66.72(90.13)±0.67 | 4.10(17.63)±0.20 | 17.06±0.13 |
表4 分离组分的化学成分
Table 4 Chemical composition of fractions
样品编号 | 固体组分 | 液体组分 | |||||||
---|---|---|---|---|---|---|---|---|---|
灰分/% | 得率/% | 酸溶木质素/% | 酸不溶木质素/% | 木质素脱除率/% | 葡聚糖/% | 木聚糖/% | 木糖/(g/L) | ||
P25T70t30 | 0.34±0.02 | 93.59±0.20 | 4.72(96.08)±0.02 | 22.15(90.57)±0.27 | 9.43±1.22 | 41.42(99.17)±1.00 | 13.47(86.62)±0.33 | 1.70±0.05 | |
P40T70t60 | 0.25±0.00 | 72.56±0.18 | 4.47(83.09)±0.00 | 19.05(68.90)±0.59 | 31.30±0.20 | 43.78(96.50)±0.97 | 12.57(71.34)±0.99 | 2.68±0.04 | |
P25T80t60 | 0.24±0.04 | 80.02±0.20 | 3.56(78.35)±0.02 | 18.94(65.21)±0.30 | 33.79±0.39 | 42.42(98.86)±0.30 | 10.56(58.07)±0.78 | 4.67±0.02 | |
P55T80t30 | 0.17±0.00 | 75.49±0.04 | 3.08(54.94)±0.05 | 16.29(53.20)±0.68 | 47.80±1.03 | 46.59(99.54)±0.78 | 8.52(42.94)±0.88 | 5.45±0.03 | |
P55T70t90 | 0.09±0.00 | 73.36±0.15 | 2.55(45.89)±0.01 | 15.14(50.57)±0.79 | 47.43±1.08 | 56.49(102.89)±0.39 | 6.78(37.05)±0.90 | 6.78±0.02 | |
P40T90t30 | 0.06±0.00 | 70.97±0.13 | 2.08(29.76)±0.03 | 13.54(46.95)±0.20 | 55.05±1.09 | 58.39(100.90)±0.65 | 6.88(35.95)±0.20 | 10.07±0.03 | |
P40T80t90 | 0.08±0.1 | 69.38±0.07 | 1.56(18.92)±0.00 | 13.48(42.80)±0.01 | 57.37±0.98 | 60.30(105.48)±0.76 | 5.15(25.60)±0.44 | 13.92±0.06 | |
P25T90t90 | 0.09±0.03 | 63.73±0.07 | 1.01(8.58)±0.04 | 12.95(37.29)±0.30 | 62.91±0.79 | 59.61(102.34)±0.89 | 5.25(24.81)±0.77 | 14.78±0.08 | |
P55T90t60 | 0.06±0.02 | 58.50±0.20 | 0.53(7.59)±0.01 | 12.54(32.06)±1.49 | 67.94±0.90 | 72.14(98.73)±0.45 | 4.08(16.42)±0.02 | 15.08±0.10 | |
M40T100t60 | 0.31±0.01 | 91.63±0.19 | 4.89(96.28)±0.10 | 22.17(88.76)±0.67 | 11.24±0.76 | 46.77(94.49)±1.29 | 12.33(77.65)±1.08 | 1.89±0.01 | |
M55T100t120 | 0.28±0.04 | 74.50±0.03 | 4.38(83.56)±0.03 | 20.58(75.99)±0.40 | 24.01±1.02 | 56.59(95.59)±0.45 | 9.52(58.73)±0.99 | 7.50±0.02 | |
M70T120t60 | 0.23±0.00 | 72.24±0.16 | 3.68(59.27)±0.02 | 19.05(56.33)±0.30 | 43.67±1.07 | 59.00(93.72)±0.64 | 8.51(45.07)±0.97 | 12.03±0.01 | |
M40T120t120 | 0.18±0.05 | 71.01±0.16 | 3.04(51.57)±0.04 | 18.16(53.46)±0.99 | 46.54±1.11 | 49.10(95.43)±0.82 | 9.24(37.56)±0.76 | 13.92±0.04 | |
M55T140t60 | 0.19±0.00 | 67.98±0.18 | 2.74(49.04)±0.03 | 17.80(49.90)±0.39 | 50.10±0.20 | 62.52(95.61)±0.84 | 7.65(35.74)±0.56 | 15.20±0.02 | |
M70T100t180 | 0.02±0.01 | 65.60±0.09 | 2.03(47.22)±0.01 | 16.06(47.80)±1.01 | 52.20±0.49 | 56.66(93.97)±0.39 | 6.54(32.25)±0.88 | 15.98±0.07 | |
M55T120t180 | 0.05±0.01 | 63.81±0.19 | 1.78(35.07)±0.04 | 15.68(45.04)±0.20 | 54.96±0.59 | 66.73(94.71)±0.59 | 6.57(28.38)±0.99 | 16.06±0.03 | |
M40T140t180 | 0.03±0.01 | 62.11±0.11 | 1.34(28.42)±0.02 | 13.21(36.33)±0.30 | 63.67±0.50 | 59.66(91.28)±0.58 | 6.44(26.17)±0.30 | 16.60±0.80 | |
M70T140t120 | 0.06±0.03 | 60.58±0.13 | 0.67(13.68)±0.01 | 12.75(34.86)±0.22 | 65.14±1.02 | 66.72(90.13)±0.67 | 4.10(17.63)±0.20 | 17.06±0.13 |
水平 | 因素 | 木质素脱除率/% | ||
---|---|---|---|---|
A质量 分数/% | B反应 温度/℃ | C反应 时间/min | ||
1 | 25 | 70 | 30 | 9.43 |
2 | 25 | 80 | 60 | 34.79 |
3 | 25 | 90 | 90 | 62.71 |
4 | 40 | 70 | 60 | 31.10 |
5 | 40 | 80 | 90 | 57.20 |
6 | 40 | 90 | 30 | 53.05 |
7 | 55 | 70 | 90 | 49.43 |
8 | 55 | 80 | 30 | 46.80 |
9 | 55 | 90 | 60 | 67.94 |
K1 | 107 | 0.90 | 190 | |
K2 | 141 | 139 | 134 | |
K3 | 164 | 184 | 169 | |
k1 | 36 | 30 | 36 | |
k2 | 47 | 46 | 45 | |
k3 | 55 | 61 | 56 | |
极差R | 19 | 31 | 20 | |
最优方案 | A3 | B3 | C3 | |
极差R排序 | BCA |
表5 TSA正交实验与极差分析
Table 5 TSA orthogonal experiment and range analysis
水平 | 因素 | 木质素脱除率/% | ||
---|---|---|---|---|
A质量 分数/% | B反应 温度/℃ | C反应 时间/min | ||
1 | 25 | 70 | 30 | 9.43 |
2 | 25 | 80 | 60 | 34.79 |
3 | 25 | 90 | 90 | 62.71 |
4 | 40 | 70 | 60 | 31.10 |
5 | 40 | 80 | 90 | 57.20 |
6 | 40 | 90 | 30 | 53.05 |
7 | 55 | 70 | 90 | 49.43 |
8 | 55 | 80 | 30 | 46.80 |
9 | 55 | 90 | 60 | 67.94 |
K1 | 107 | 0.90 | 190 | |
K2 | 141 | 139 | 134 | |
K3 | 164 | 184 | 169 | |
k1 | 36 | 30 | 36 | |
k2 | 47 | 46 | 45 | |
k3 | 55 | 61 | 56 | |
极差R | 19 | 31 | 20 | |
最优方案 | A3 | B3 | C3 | |
极差R排序 | BCA |
水平 | 因素 | 木质素脱除率/% | ||
---|---|---|---|---|
A质量 分数/% | B反应 温度/℃ | C反应 时间/min | ||
1 | 40 | 100 | 60 | 11.24 |
2 | 40 | 120 | 120 | 43.67 |
3 | 40 | 140 | 180 | 63.67 |
4 | 55 | 100 | 120 | 24.01 |
5 | 55 | 120 | 180 | 54.96 |
6 | 55 | 140 | 60 | 50.10 |
7 | 70 | 100 | 180 | 52.20 |
8 | 70 | 120 | 60 | 46.54 |
9 | 70 | 140 | 120 | 65.14 |
K1 | 119 | 96 | 108 | |
K2 | 140 | 147 | 142 | |
K3 | 164 | 179 | 173 | |
k1 | 40 | 32 | 36 | |
k2 | 47 | 49 | 47 | |
k3 | 55 | 60 | 58 | |
极差R | 15 | 11 | 22 | |
最优方案 | A3 | B3 | C3 | |
极差R排序 | CAB |
表6 MA正交实验与极差分析
Table 6 MA orthogonal experiment and range analysis
水平 | 因素 | 木质素脱除率/% | ||
---|---|---|---|---|
A质量 分数/% | B反应 温度/℃ | C反应 时间/min | ||
1 | 40 | 100 | 60 | 11.24 |
2 | 40 | 120 | 120 | 43.67 |
3 | 40 | 140 | 180 | 63.67 |
4 | 55 | 100 | 120 | 24.01 |
5 | 55 | 120 | 180 | 54.96 |
6 | 55 | 140 | 60 | 50.10 |
7 | 70 | 100 | 180 | 52.20 |
8 | 70 | 120 | 60 | 46.54 |
9 | 70 | 140 | 120 | 65.14 |
K1 | 119 | 96 | 108 | |
K2 | 140 | 147 | 142 | |
K3 | 164 | 179 | 173 | |
k1 | 40 | 32 | 36 | |
k2 | 47 | 49 | 47 | |
k3 | 55 | 60 | 58 | |
极差R | 15 | 11 | 22 | |
最优方案 | A3 | B3 | C3 | |
极差R排序 | CAB |
参数 | 单位 | CDF | CHF | ||
---|---|---|---|---|---|
TSA | MA | TSA | MA | ||
α,α′ | — | 35.46 | 11.75 | 26.79 | 9.01 |
β,β′ | — | 0.14 | 9.9E-05 | 0.10 | 0.10 |
E,E′ | J/mol | 95800 | 44187 | 78958 | 49852 |
f,f′ | — | 0.00036 | 0.015 | 0.0072 | 0.08 |
θ,θ′ | — | 0.64 | 0.73 | 0.88 | 0.37 |
θRe,θ | — | 0.33 | 0.35 | 0.14 | 0.00042 |
表7 式(4)~式(7)拟合参数
Table 7 Fitting parameters for Eqs. (4)—(7)
参数 | 单位 | CDF | CHF | ||
---|---|---|---|---|---|
TSA | MA | TSA | MA | ||
α,α′ | — | 35.46 | 11.75 | 26.79 | 9.01 |
β,β′ | — | 0.14 | 9.9E-05 | 0.10 | 0.10 |
E,E′ | J/mol | 95800 | 44187 | 78958 | 49852 |
f,f′ | — | 0.00036 | 0.015 | 0.0072 | 0.08 |
θ,θ′ | — | 0.64 | 0.73 | 0.88 | 0.37 |
θRe,θ | — | 0.33 | 0.35 | 0.14 | 0.00042 |
处理条件 | CDF/(min·mol/L) | CHF/(min·mol/L) |
---|---|---|
P25T70t30 | 363.2 | 21.0 |
P40T70t60 | 1419.4 | 78.6 |
P25T80t60 | 1881.2 | 91.8 |
P55T80t30 | 3121.8 | 139.7 |
P55T70t90 | 3615.9 | 180.6 |
P40T90t30 | 4517.6 | 191.3 |
P40T80t90 | 5514.3 | 258.2 |
P25T90t90 | 6935.4 | 289.1 |
P55T90t60 | 15344.9 | 586.3 |
P55T90t90 | 23017.3 | 879.4 |
M40T100t60 | 21.4 | 0.3 |
M55T100t120 | 57.5 | 1.1 |
M70T120t60 | 82.5 | 1.6 |
M40T120t120 | 88.2 | 2.1 |
M55T140t60 | 114.2 | 2.5 |
M70T100t180 | 119.8 | 2.8 |
M55T120t180 | 178.0 | 3.7 |
M40T140t180 | 254.7 | 4.9 |
M70T140t120 | 317.5 | 8.9 |
M70T140t180 | 476.2 | 13.4 |
表8 TSA、MA组分分离的CDF和 CHF值
Table 8 CDF and CHF values of TSA and MA fractionation
处理条件 | CDF/(min·mol/L) | CHF/(min·mol/L) |
---|---|---|
P25T70t30 | 363.2 | 21.0 |
P40T70t60 | 1419.4 | 78.6 |
P25T80t60 | 1881.2 | 91.8 |
P55T80t30 | 3121.8 | 139.7 |
P55T70t90 | 3615.9 | 180.6 |
P40T90t30 | 4517.6 | 191.3 |
P40T80t90 | 5514.3 | 258.2 |
P25T90t90 | 6935.4 | 289.1 |
P55T90t60 | 15344.9 | 586.3 |
P55T90t90 | 23017.3 | 879.4 |
M40T100t60 | 21.4 | 0.3 |
M55T100t120 | 57.5 | 1.1 |
M70T120t60 | 82.5 | 1.6 |
M40T120t120 | 88.2 | 2.1 |
M55T140t60 | 114.2 | 2.5 |
M70T100t180 | 119.8 | 2.8 |
M55T120t180 | 178.0 | 3.7 |
M40T140t180 | 254.7 | 4.9 |
M70T140t120 | 317.5 | 8.9 |
M70T140t180 | 476.2 | 13.4 |
处理条件 | 数均长度/mm | 重均长度/mm | 宽度/μm | 扭结指数/% | 卷曲指数/% | 细小纤维含量/% | 长宽比 |
---|---|---|---|---|---|---|---|
P25T70t30 | 0.596 | 0.578 | 21.5 | 15.0 | 5.0 | 30.2 | 26.9 |
P40T70t60 | 0.509 | 0.540 | 20.6 | 14.9 | 4.9 | 31.9 | 26.2 |
P25T80t60 | 0.479 | 0.532 | 19.2 | 14.2 | 4.8 | 32.9 | 27.7 |
P55T80t30 | 0.403 | 0.468 | 19.0 | 14.0 | 5.2 | 33.8 | 24.6 |
P55T70t90 | 0.379 | 0.457 | 19.0 | 14.3 | 5.8 | 35.8 | 24.1 |
P40T90t30 | 0.309 | 0.456 | 18.7 | 14.6 | 6.0 | 37.0 | 24.4 |
P40T80t90 | 0.380 | 0.489 | 19.3 | 14.9 | 6.4 | 45.9 | 25.3 |
P25T90t90 | 0.346 | 0.410 | 19.2 | 14.2 | 6.2 | 50.3 | 21.4 |
P55T90t60 | 0.301 | 0.335 | 19.2 | 12.7 | 5.7 | 56.1 | 17.4 |
M40T100t60 | 0.568 | 0.599 | 21.8 | 12.2 | 4.9 | 33.1 | 27.5 |
M55T100t120 | 0.485 | 0.556 | 19.2 | 11.8 | 5.3 | 39.5 | 28.6 |
M70T120t60 | 0.437 | 0.536 | 19.4 | 10.3 | 5.4 | 39.9 | 27.6 |
M40T120t120 | 0.425 | 0.474 | 19.1 | 9.3 | 5.4 | 46.1 | 24.8 |
M55T140t60 | 0.402 | 0.456 | 18.3 | 9.0 | 5.5 | 48.3 | 24.9 |
M70T100t180 | 0.304 | 0.448 | 18.6 | 8.9 | 5.7 | 50.9 | 24.1 |
M55T120t180 | 0.317 | 0.467 | 19.2 | 9.2 | 5.8 | 55.3 | 24.3 |
M40T140t180 | 0.302 | 0.407 | 19.0 | 8.1 | 5.1 | 58.6 | 21.4 |
M70T140t120 | 0.299 | 0.324 | 18.9 | 7.2 | 4.4 | 60.0 | 17.1 |
表9 TSA和MA固体组分纤维质量分析
Table 9 Fiber quality analysis of TSA and MA solid fraction
处理条件 | 数均长度/mm | 重均长度/mm | 宽度/μm | 扭结指数/% | 卷曲指数/% | 细小纤维含量/% | 长宽比 |
---|---|---|---|---|---|---|---|
P25T70t30 | 0.596 | 0.578 | 21.5 | 15.0 | 5.0 | 30.2 | 26.9 |
P40T70t60 | 0.509 | 0.540 | 20.6 | 14.9 | 4.9 | 31.9 | 26.2 |
P25T80t60 | 0.479 | 0.532 | 19.2 | 14.2 | 4.8 | 32.9 | 27.7 |
P55T80t30 | 0.403 | 0.468 | 19.0 | 14.0 | 5.2 | 33.8 | 24.6 |
P55T70t90 | 0.379 | 0.457 | 19.0 | 14.3 | 5.8 | 35.8 | 24.1 |
P40T90t30 | 0.309 | 0.456 | 18.7 | 14.6 | 6.0 | 37.0 | 24.4 |
P40T80t90 | 0.380 | 0.489 | 19.3 | 14.9 | 6.4 | 45.9 | 25.3 |
P25T90t90 | 0.346 | 0.410 | 19.2 | 14.2 | 6.2 | 50.3 | 21.4 |
P55T90t60 | 0.301 | 0.335 | 19.2 | 12.7 | 5.7 | 56.1 | 17.4 |
M40T100t60 | 0.568 | 0.599 | 21.8 | 12.2 | 4.9 | 33.1 | 27.5 |
M55T100t120 | 0.485 | 0.556 | 19.2 | 11.8 | 5.3 | 39.5 | 28.6 |
M70T120t60 | 0.437 | 0.536 | 19.4 | 10.3 | 5.4 | 39.9 | 27.6 |
M40T120t120 | 0.425 | 0.474 | 19.1 | 9.3 | 5.4 | 46.1 | 24.8 |
M55T140t60 | 0.402 | 0.456 | 18.3 | 9.0 | 5.5 | 48.3 | 24.9 |
M70T100t180 | 0.304 | 0.448 | 18.6 | 8.9 | 5.7 | 50.9 | 24.1 |
M55T120t180 | 0.317 | 0.467 | 19.2 | 9.2 | 5.8 | 55.3 | 24.3 |
M40T140t180 | 0.302 | 0.407 | 19.0 | 8.1 | 5.1 | 58.6 | 21.4 |
M70T140t120 | 0.299 | 0.324 | 18.9 | 7.2 | 4.4 | 60.0 | 17.1 |
图5 木质素脂肪族和芳香族区域的2D-HSQC谱图A—β-O-4醚键结构,γ位为羟基;A′—β-O-4醚键结构,γ位为乙酰基;A″—β-O-4醚键结构,γ位为酯化对香豆酸酯;B—苯基香豆满结构,由β-5和α-O-4联接而成;C—树脂醇结构,由β-β、α-O-γ和γ-O-α联接而成;HKγ—希伯特酮;Eγ(MA)—S或G木质素结构单元含有γ-OH[28];S—紫丁香基结构;S′—氧化紫丁香基结构,α位为酮基;G—愈创木基结构;G′—氧化愈创木基结构
Fig.5 The aromatic regions (δC/δH 90—150/6.0—8.0) and aliphatic region (δC/δH 50—90/2.0—6.0) of lignin in 2D-HSQC NMR spectra
信号 | δC/δH | 信号归属 |
---|---|---|
S2/6 | 103.9/6.84 | C2/6-H2/6 in syringyl units (S) |
S | 106.2/7.35 | C2/6-H2/6 in oxidized S units (S′) |
Scon | 106.5/6.48 | condensed C2/6-H2/6 in syringyl units |
G2 | 110.9/7.05 | C2-H2 in guaiacyl units (G) |
G | 110.9/7.34 | C2-H2 in oxidized(Cα-O)guaiacyl units (G′) |
G5 | 114.5/6.71 | C5-H5 in guaiacyl units (G) |
G6 | 118.9/6.77 | C6-H6 in guaiacyl units (G) |
Aγ | 59.9/3.63 | Cγ-Hγ in γ-hydroxylated β-O-4′ substructures (A) |
Bγ | 62.6/3.72 | Cγ-Hγ in β-β resinol (B) |
Cγ | 62.4/3.43 | Cγ-Hγ in phenylcoumaran (C) |
A | 64.8/4.31 | Cγ-Hγ in γ-acylated β-O-4(A′ ) |
(A,A′)ɑ | 71.5/5.00 | Cα-Hα in β-O-4′ substructures (A) |
Bɑ | 86.9/5.55 | Cα-Hα in phenylcoumaran substructures(B) |
Cɑ | 86.8/5.47 | Cα-Hα in β-β′ resinol substructures (C) |
Aβ(G) | 83.8/4.48 | Cβ-Hβ in β-O-4′ substructures (A) linked to a G-unit |
Aβ(S) | 86.0/4.25 | Cβ-Hβ in β-O-4′ substructures (A) linked to a S-unit |
Bβ | 53.5/3.46 | Cβ-Hβ in phenylcoumaran substructures(B) |
Cβ | 53.1/3.06 | Cβ-Hβ in β-β′resinol substructures (C) |
methoxyl | 55.6/3.58 | methoxyl |
HKγ | 67.1/4.19 | Cγ-Hγ in Hibbert’s ketone (HK) |
Eγ(MA) | 128.0/6.2, 132.9/6.4, 68.3/4.37 | Cγ-esterified by maleic acid |
表10 木质素2D-HSQC信号归属
Table 10 Assignments of the lignin 13C-1H correlation peaks in the 2D-HSQC spectra of lignin
信号 | δC/δH | 信号归属 |
---|---|---|
S2/6 | 103.9/6.84 | C2/6-H2/6 in syringyl units (S) |
S | 106.2/7.35 | C2/6-H2/6 in oxidized S units (S′) |
Scon | 106.5/6.48 | condensed C2/6-H2/6 in syringyl units |
G2 | 110.9/7.05 | C2-H2 in guaiacyl units (G) |
G | 110.9/7.34 | C2-H2 in oxidized(Cα-O)guaiacyl units (G′) |
G5 | 114.5/6.71 | C5-H5 in guaiacyl units (G) |
G6 | 118.9/6.77 | C6-H6 in guaiacyl units (G) |
Aγ | 59.9/3.63 | Cγ-Hγ in γ-hydroxylated β-O-4′ substructures (A) |
Bγ | 62.6/3.72 | Cγ-Hγ in β-β resinol (B) |
Cγ | 62.4/3.43 | Cγ-Hγ in phenylcoumaran (C) |
A | 64.8/4.31 | Cγ-Hγ in γ-acylated β-O-4(A′ ) |
(A,A′)ɑ | 71.5/5.00 | Cα-Hα in β-O-4′ substructures (A) |
Bɑ | 86.9/5.55 | Cα-Hα in phenylcoumaran substructures(B) |
Cɑ | 86.8/5.47 | Cα-Hα in β-β′ resinol substructures (C) |
Aβ(G) | 83.8/4.48 | Cβ-Hβ in β-O-4′ substructures (A) linked to a G-unit |
Aβ(S) | 86.0/4.25 | Cβ-Hβ in β-O-4′ substructures (A) linked to a S-unit |
Bβ | 53.5/3.46 | Cβ-Hβ in phenylcoumaran substructures(B) |
Cβ | 53.1/3.06 | Cβ-Hβ in β-β′resinol substructures (C) |
methoxyl | 55.6/3.58 | methoxyl |
HKγ | 67.1/4.19 | Cγ-Hγ in Hibbert’s ketone (HK) |
Eγ(MA) | 128.0/6.2, 132.9/6.4, 68.3/4.37 | Cγ-esterified by maleic acid |
样品编号 | CDF/(min·mol/L) | S2/6 | S′2/6 | Scon | S | G | S/G | β-O-4/% | β-5/% | β-β/% |
---|---|---|---|---|---|---|---|---|---|---|
MWL | 0 | 55.56 | 5.98 | 0 | 61.54 | 42.79 | 1.44 | 52.31 | 2.04 | 6.67 |
P40T70t60 | 1419.4 | 72.44 | 2.87 | 10.55 | 85.86 | 14.14 | 6.07 | 50.72 | 0.92 | 5.23 |
P40T80t90 | 5514.3 | 71.65 | 2.23 | 22.18 | 96.06 | 3.94 | 24.40 | 31.23 | 0.79 | 4.20 |
P55T90t60 | 15344.9 | 24.98 | 2.13 | 71.74 | 98.85 | 1.15 | 86.21 | 0 | 0 | 1.84 |
M55T100t120 | 57.5 | 58.56 | 4.10 | 31.15 | 93.81 | 6.19 | 15.15 | 31.33 | 1.00 | 3.87 |
M55T120t180 | 178.0 | 23.14 | 2.77 | 71.42 | 97.33 | 2.67 | 36.49 | 1.53 | 0.40 | 1.03 |
M70T140t120 | 317.5 | 16.13 | 1.30 | 81.62 | 99.05 | 0.95 | 104.67 | 0 | 0 | 0.39 |
表11 木质素结构单元及其比例和连接方式的2D-HSQC半定量分析
Table 11 Semi-quantitative analysis of lignin units and ratio and linkages based on 2D-HSQC spectra
样品编号 | CDF/(min·mol/L) | S2/6 | S′2/6 | Scon | S | G | S/G | β-O-4/% | β-5/% | β-β/% |
---|---|---|---|---|---|---|---|---|---|---|
MWL | 0 | 55.56 | 5.98 | 0 | 61.54 | 42.79 | 1.44 | 52.31 | 2.04 | 6.67 |
P40T70t60 | 1419.4 | 72.44 | 2.87 | 10.55 | 85.86 | 14.14 | 6.07 | 50.72 | 0.92 | 5.23 |
P40T80t90 | 5514.3 | 71.65 | 2.23 | 22.18 | 96.06 | 3.94 | 24.40 | 31.23 | 0.79 | 4.20 |
P55T90t60 | 15344.9 | 24.98 | 2.13 | 71.74 | 98.85 | 1.15 | 86.21 | 0 | 0 | 1.84 |
M55T100t120 | 57.5 | 58.56 | 4.10 | 31.15 | 93.81 | 6.19 | 15.15 | 31.33 | 1.00 | 3.87 |
M55T120t180 | 178.0 | 23.14 | 2.77 | 71.42 | 97.33 | 2.67 | 36.49 | 1.53 | 0.40 | 1.03 |
M70T140t120 | 317.5 | 16.13 | 1.30 | 81.62 | 99.05 | 0.95 | 104.67 | 0 | 0 | 0.39 |
质量分数/% | TSA溶液接触角/(°) | MA溶液接触角/(°) |
---|---|---|
10 | 107.94±1.90 | 103.36±0.40 |
20 | 94.70±1.70 | 103.10±1.80 |
30 | 89.98±0.70 | 102.71±0.02 |
40 | 84.14±0.02 | 98.27±0.04 |
50 | 83.84±0.04 | 96.14±0.01 |
表12 酸性助水溶剂接触角
Table 12 The contact angle of acid hydrotropes
质量分数/% | TSA溶液接触角/(°) | MA溶液接触角/(°) |
---|---|---|
10 | 107.94±1.90 | 103.36±0.40 |
20 | 94.70±1.70 | 103.10±1.80 |
30 | 89.98±0.70 | 102.71±0.02 |
40 | 84.14±0.02 | 98.27±0.04 |
50 | 83.84±0.04 | 96.14±0.01 |
1 | 亓伟, 王闻, 王琼, 等. 木质纤维素预处理技术及其机理研究进展[J]. 新能源进展, 2013, 1(2): 150-158. |
Qi W, Wang W, Wang Q, et al. Review on the pretreatment method and mechanism of lignocellulose[J]. Advances in New and Renewable Energy, 2013, 1(2): 150-158. | |
2 | 祝其丽, 何明雄, 谭芙蓉, 等. 木质纤维素生物质预处理研究现状[J]. 生物技术进展, 2015, 5(6): 414-419. |
Zhu Q L, He M X, Tan F R, et al. Progress on pretreatment technologies of lignocellulosic biomass[J]. Current Biotechnology, 2015, 5(6): 414-419. | |
3 | 路鹏, 江滔, 李国学. 木质纤维素乙醇发酵研究中的关键点及解决方案[J]. 农业工程学报, 2006, 22(9): 237-240. |
Lu P, Jiang T, Li G X. Key points of ethanol fermentation of lignocellulose and resolving methods[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(9): 237-240. | |
4 | Tian S, Zhu W, Gleisner R, et al. Comparisons of SPORL and dilute acid pretreatments for sugar and ethanol productions from Aspen[J]. Biotechnology Progress, 2011, 27(2): 419-427. |
5 | Zhao Y L, Wang Y, Zhu J Y, et al. Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature[J]. Biotechnology and Bioengineering, 2008, 99(6): 1320-1328. |
6 | Zhang K, Pei Z J, Wang D H. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review[J]. Bioresource Technology, 2016, 199: 21-33. |
7 | Brandt A, Ray M J, To T Q, et al. Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid-water mixtures[J]. Green Chemistry, 2011, 13(9): 2489. |
8 | 周静. 预处理对麦草化学组分分离及酶解性能的影响研究[D]. 北京: 中国林业科学研究院, 2018. |
Zhou J. Investigation on effects of different pretreatment methods on chemical composition of wheat straw and enzymatic hydrolysis[D]. Beijing: Chinese Academy of Forestry, 2018. | |
9 | Lee J, Lee S C, Acharya G, et al. Hydrotropic solubilization of paclitaxel: analysis of chemical structures for hydrotropic property[J]. Pharmaceutical Research, 2003, 20(7): 1022-1030. |
10 | Hodgdon T K, Kaler E W. Hydrotropic solutions[J]. Current Opinion in Colloid & Interface Science, 2007, 12(3): 121-128. |
11 | Rinaldi R, Jastrzebski R, Clough M T, et al. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis[J]. Angewandte Chemie International Edition, 2016, 55(29): 8164-8215. |
12 | 尹崇鑫, 王敏, 程金兰, 等. 助水溶剂应用在生物质精炼领域的研究进展[J]. 林产化学与工 业, 2021, 41(3): 134-140. |
Yin C X, Wang M, Cheng J L, et al. Research progress of application of hydrotropes in biorefinery[J]. Chemistry and Industry of Forest Products, 2021, 41(3): 134-140. | |
13 | 程金兰, 尹崇鑫, 王敏, 等. p-TsOH对稻草的组分分离动力学及分离产物性质[J]. 林业工程学报, 2022, 7(1): 122-129. |
Cheng J L, Yin C X, Wang M, et al. p-TsOH fractionation kinetics of rice straw and its effect on properties of fraction products[J]. Journal of Forestry Engineering, 2022, 7(1): 122-129. | |
14 | Wang H H, Hirth K, Zhu J J, et al. Dissolution of less-processed wood fibers without bleaching in an ionic liquid: effect of lignin condensation on wood component dissolution[J]. International Journal of Biological Macromolecules, 2019, 134: 740-748. |
15 | Cheng J L, Hirth K, Ma Q L, et al. Toward sustainable and complete wood valorization by fractionating lignin with low condensation using an acid hydrotrope at low temperatures (≤80℃)[J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7063-7073. |
16 | Mou H Y, Wu S B. Comparison of organosolv and hydrotropic pretreatments of eucalyptus for enhancing enzymatic saccharification[J]. Bioresource Technology, 2016, 220: 637-640. |
17 | Ansari K B, Gaikar V G. Green hydrotropic extraction technology for delignification of sugarcane bagasse by using alkybenzene sulfonates as hydrotropes[J]. Chemical Engineering Science, 2014, 115: 157-166. |
18 | Chen L H, Dou J Z, Ma Q L, et al. Rapid and near-complete dissolution of wood lignin at ≤80℃ by a recyclable acid hydrotrope[J]. Science Advances, 2017, 3(9): e1701735. |
19 | Wang Z J, Qiu S, Hirth K, et al. Preserving both lignin and cellulose chemical structures: flow-through acid hydrotropic fractionation at atmospheric pressure for complete wood valorization[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10808-10820. |
20 | Cai C, Hirth K, Gleisner R, et al. Maleic acid as a dicarboxylic acid hydrotrope for sustainable fractionation of wood at atmospheric pressure and ≤100℃: mode and utility of lignin esterification[J]. Green Chemistry, 2020, 22(5): 1605-1617. |
21 | Zhai Q L, Han S M, Hse C Y, et al. 5-Sulfosalicylic acid as an acid hydrotrope for the rapid and green fractionation of woody biomass[J]. Industrial Crops and Products, 2022, 177: 114435. |
22 | Su C, Hirth K, Liu Z L, et al. Acid hydrotropic fractionation of switchgrass at atmospheric pressure using maleic acid in comparison with p-TsOH: advantages of lignin esterification[J]. Industrial Crops and Products, 2021, 159: 113017. |
23 | Das S, Paul S. Exploring molecular insights into aggregation of hydrotrope sodium cumene sulfonate in aqueous solution: a molecular dynamics simulation study[J]. Journal of Physical Chemistry B, 2015, 119(7): 3142-3154. |
24 | 尉慰奇. 桉木原料的预处理及其酶解糖化的研究[D]. 广州: 华南理工大学, 2012. |
Yu W Q. The study of pretreatment and enzymatic hydrolysis of eucalyptus raw materials[D]. Guangzhou: South China University of Technology, 2012. | |
25 | 李有海, 林奕, 杨丽仙, 等. 正交实验在水质硫化物分析中的应用[J]. 黑龙江科学, 2021, 12(6): 23-25. |
Li Y H, Lin Y, Yang L X, et al. Application of orthogonal experiment in water quality sulfide analysis[J]. Heilongjiang Science, 2021, 12(6): 23-25. | |
26 | 文甲龙. 生物质木质素结构解析及其预处理解离机制研究[D]. 北京: 北京林业大学, 2014. |
Wen J L. Structural elucidation of lignin from biomass and its dissociative mechanism during pretreatment process[D]. Beijing: Beijing Forestry University, 2014. | |
27 | Yin C X, Wang M, Ma Q Z, et al. Valorization of rice straw via hydrotropic lignin extraction and its characterization[J]. Molecules (Basel, Switzerland), 2021, 26(14): 4123. |
28 | Cai C, Li J, Hirth K, et al. Comparison of two acid hydrotropes for sustainable fractionation of birch wood[J]. ChemSusChem, 2020, 13(17): 4649-4659. |
29 | Zhu W, Houtman C J, Zhu J Y, et al. Quantitative predictions of bioconversion of aspen by dilute acid and SPORL pretreatments using a unified combined hydrolysis factor (CHF)[J]. Process Biochemistry, 2012, 47(5): 785-791. |
30 | Ma Q L, Zhu J J, Gleisner R, et al. Valorization of wheat straw using a recyclable hydrotrope at low temperatures (≤90℃)[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14480-14489. |
31 | Zhou H F, Leu S Y, Wu X L, et al. Comparisons of high titer ethanol production and lignosulfonate properties by SPORL pretreatment of lodgepole pine at two temperatures[J]. RSC Adv., 2014, 4(51): 27030-27038. |
32 | Zhu J Y, Chen L H, Cai C. Acid hydrotropic fractionation of lignocelluloses for sustainable biorefinery: advantages, opportunities, and research needs[J]. ChemSusChem, 2021, 14(15): 3031-3046. |
33 | Yang B, Wyman C E. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose[J]. Biotechnology and Bioengineering, 2004, 86(1): 88-98. |
34 | 李忠正. 植物纤维资源化学[M]. 北京: 中国轻工业出版社, 2012. |
Li Z Z. Chemistry of Plant Fiber Resources[M]. Beijing: China Light Industry Press, 2012. | |
35 | 蒋侃侃. 马来酸预处理麦秸的研究[D]. 南京: 南京林业大学, 2011. |
Jiang K K. Pretreatment of wheat straw using maleic acid[D]. Nanjing: Nanjing Forestry University, 2011. | |
36 | 李猛, 张亚茹, 高梦亚, 等. 玉米秸秆苞叶与茎皮中磨木木质素和木素-碳水化合物复合体的傅里叶红外光谱分析[J]. 玉米科学, 2020, 28(3): 87-91, 98. |
Li M, Zhang Y R, Gao M Y, et al. FT-IR analysis of MWL and LCC in different parts of corn stalk[J]. Journal of Maize Sciences, 2020, 28(3): 87-91, 98. | |
37 | Del Río J C, Rencoret J, Prinsen P, et al. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods[J]. Journal of Agricultural and Food Chemistry, 2012, 60(23): 5922-5935. |
38 | Yelle D J, Ralph J, Frihart C R. Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy[J]. Magnetic Resonance in Chemistry, 2008, 46(6): 508-517. |
39 | Zeng J J, Helms G L, Gao X, et al. Quantification of wheat straw lignin structure by comprehensive NMR analysis[J]. Journal of Agricultural and Food Chemistry, 2013, 61(46): 10848-10857. |
40 | Li N, Li Y D, Yoo C G, et al. An uncondensed lignin depolymerized in the solid state and isolated from lignocellulosic biomass: a mechanistic study[J]. Green Chemistry, 2018, 20(18): 4224-4235. |
41 | Shuai L, Amiri M T, Questell-Santiago Y M, et al. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization[J]. Science, 2016, 354(6310): 329-333. |
42 | 姚敏. 磷酸-超声法分离桉木木质素及其结构的表征[D]. 南宁: 广西大学, 2020. |
Yao M. Phosphoric acid-ultrasonic separation eucalyptus lignin and characterization its structure[D]. Nanning: Guangxi University, 2020. | |
43 | Zhang C F, Wang F. Catalytic lignin depolymerization to aromatic chemicals[J]. Accounts of Chemical Research, 2020, 53(2): 470-484. |
44 | Yang L F, Cao J, Jin Y C, et al. Effects of sodium carbonate pretreatment on the chemical compositions and enzymatic saccharification of rice straw[J]. Bioresource Technology, 2012, 124: 283-291. |
45 | 曹婷月. 利用QCM研究木质素结构对纤维素酶吸附和酶水解的影响[D]. 南京: 南京林业大学, 2018. |
Cao T Y. The effect of lignin structure on cellulase adsorption and enzymatic hydrolysis by using QCM[D]. Nanjing: Nanjing Forestry University, 2018. | |
46 | 张颖, 翟勇祥. 木质素的催化加氢转化[J]. 化工学报, 2017, 68(3): 821-830. |
Zhang Y, Zhai Y X. Catalytic hydroprocessing of lignin[J]. CIESC Journal, 2017, 68(3): 821-830. | |
47 | Subramanian D, Anisimov M A. Phase behavior and mesoscale solubilization in aqueous solutions of hydrotropes[J]. Fluid Phase Equilibria, 2014, 362: 170-176. |
48 | Robertson A E, Phan D H, Macaluso J E, et al. Mesoscale solubilization and critical phenomena in binary and quasi-binary solutions of hydrotropes[J]. Fluid Phase Equilibria, 2016, 407: 243-254. |
49 | Enami S, Ishizuka S, Colussi A J. Chemical signatures of surface microheterogeneity on liquid mixtures[J]. The Journal of Chemical Physics, 2019, 150(2): 024702. |
50 | Blanco D, Rivera N, Oulego P, et al. Novel fatty acid anion-based ionic liquids: contact angle, surface tension, polarity fraction and spreading parameter[J]. Journal of Molecular Liquids, 2019, 288: 110995. |
51 | Szumala P, Mowinska A. Perfectly wetting mixtures of surfactants from renewable resources: the interaction and synergistic effects on adsorption and micellization[J]. Journal of Surfactants and Detergents, 2016, 19(3): 437-445. |
52 | 陈杰, 史素青, 宫永宽, 等. 特殊润湿表面制备方法及表面形貌研究进展[J]. 涂料工业, 2021, 51(8): 75-82. |
Chen J, Shi S Q, Gong Y K, et al. Research progress of preparation methods and surface morphology of specially designed wetting surfaces[J]. Paint & Coatings Industry, 2021, 51(8): 75-82. | |
53 | Koparkar Y P, Gaikar V G. Solubility of o-/p-hydroxyacetophenones in aqueous solutions of sodium alkyl benzene sulfonate hydrotropes[J]. Journal of Chemical & Engineering Data, 2004, 49(4): 800-803. |
[1] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[2] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[3] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[4] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[5] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[6] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[7] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[8] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[9] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[10] | 禹进, 余彬彬, 蒋新生. 一种基于虚拟组分的燃烧调控化学作用量化及分析方法研究[J]. 化工学报, 2023, 74(3): 1303-1312. |
[11] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[12] | 祖凌鑫, 胡荣庭, 李鑫, 陈余道, 陈广林. 木质生物质化学组分的碳释放产物特征和反硝化利用程度[J]. 化工学报, 2023, 74(3): 1332-1342. |
[13] | 郑杰元, 张先伟, 万金涛, 范宏. 丁香酚环氧有机硅树脂的制备及其固化动力学研究[J]. 化工学报, 2023, 74(2): 924-932. |
[14] | 陈晨, 杨倩, 陈云, 张睿, 刘冬. 不同氧浓度下煤挥发分燃烧的化学动力学研究[J]. 化工学报, 2022, 73(9): 4133-4146. |
[15] | 陈健鑫, 朱瑞杰, 盛楠, 朱春宇, 饶中浩. 纤维素基生物质多孔炭的制备及其超级电容器性能研究[J]. 化工学报, 2022, 73(9): 4194-4206. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||