化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3212-3221.doi: 10.11949/0438-1157.20220084

• 能源和环境工程 • 上一篇    下一篇

铜铝双金属复合离子液体的电化学行为及电沉积铜机理

欧阳萍(),张睿,周剑,刘海燕,刘植昌,徐春明,孟祥海()   

  1. 中国石油大学(北京)重质油国家重点实验室,北京 102249
  • 收稿日期:2022-01-14 修回日期:2022-03-27 出版日期:2022-07-05 发布日期:2022-08-01
  • 通讯作者: 孟祥海 E-mail:1278909896@qq.com;mengxh@cup.edu.cn
  • 作者简介:欧阳萍(1992—),女,博士研究生,1278909896@qq.com
  • 基金资助:
    国家自然科学基金项目(21890763)

Electrochemical behavior and copper electrodeposition mechanism of Cu-Al bimetallic composite ionic liquid

Ping OUYANG(),Rui ZHANG,Jian ZHOU,Haiyan LIU,Zhichang LIU,Chunming XU,Xianghai MENG()   

  1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
  • Received:2022-01-14 Revised:2022-03-27 Published:2022-07-05 Online:2022-08-01
  • Contact: Xianghai MENG E-mail:1278909896@qq.com;mengxh@cup.edu.cn

摘要:

铜铝双金属复合离子液体是新型碳四烷基化技术所用的绿色催化剂,电化学处理是回收工业应用过程外排复合离子液体中金属铜的有效途径之一,为此需要深入研究其电化学行为和电沉积铜机理。循环伏安研究发现,铜铝双金属复合离子液体在Pt盘电极、W盘电极和玻碳电极上的还原过程均包括铜的欠电势沉积、Cu(Ⅰ)的还原和铜的超电势沉积,氧化过程均包括Cu→Cu(Ⅰ)、Cu(Ⅰ)→Cu(Ⅱ)。计时安培研究表明,铜的成核方式为三维瞬时成核。长周期实验结果显示Cu(Ⅰ)的浓度随着时间下降的趋势变缓,表明电沉积铜速率逐步下降。电沉积电势对沉积产物的形貌影响较大,-2.60 V下的产物形貌更平整致密。XRD结果表明在-1.20~-2.60 V电势下阴极电沉积只生成金属铜。

关键词: 复合离子液体, 电化学, 循环伏安, 还原, 氧化, 电沉积铜

Abstract:

Cu-Al bimetallic composite ionic liquid is a novel green catalyst for isobutane alkylation in oil refining industry, and small amount of catalyst is inevitably emitted during industrial application. Electrochemical treatment is one of the effective ways for the resource utilization of Cu-Al bimetallic composite ionic liquid, and the in-depth exploration of electrochemical behavior and electrodeposition mechanism provide theoretical guidance for the efficient utilization of metal resources. By cyclic voltammetry, it was found that there were three cathodic reduction regions for Cu-Al bimetallic composite ionic liquid in cyclic voltammograms on Pt electrode, W electrode and glassy carbon electrode, and the reactions were copper underpotential deposition, Cu(Ⅰ) reduction and copper overpotential deposition. The anodic oxidation peaks were Cu→Cu(Ⅰ), Cu(Ⅰ)→Cu(Ⅱ). For W electrode, the copper underpotential deposition process and the Cu(Ⅰ) reduction process were both irreversible electrochemical reaction processes controlled by diffusion. Chronoamperometry indicated that the nucleation and growth process of copper was three-dimensional instantaneous nucleation. Long-term electrodeposition of Cu-Al bimetallic composite ionic liquid showed that the decreasing trend of Cu(Ⅰ) concentration with time slowed down, indicating that the rate of copper electrodeposition decreased with time. The electrodeposition potential had a certain effect on the morphology of the deposited products. The morphology of the deposited product obtained at -2.60 V was smooth and dense, and presented regular granular shape. XRD patterns of the electrodeposits showed that there was only copper produced on cathode by the electrodeposition of the composite ionic liquid.

Key words: composite ionic liquid, electrochemistry, cyclic voltammetry, reduction, oxidation, copper electrodeposition

中图分类号: 

  • TQ 153

图1

铜铝双金属复合离子液体在Pt盘电极(a)、W盘电极(b)、玻碳电极(c)的循环伏安曲线(扫描速率为100 mV?s-1)"

表1

铜铝双金属复合离子液体在不同工作电极上CV曲线峰电位"

ElectrodeCu UPD/VElectrodeposition of Cu(Ⅰ)/VCu→ Cu(Ⅰ)/VCu(Ⅰ)→Cu(Ⅱ)/V
Pt0.07,-0.43-1.55-0.300.29
W-0.08-1.32-0.310.54
GC0.04,-0.47-2.21-0.520.36

图2

铜铝双金属复合离子液体在W盘电极上不同扫描速率下的循环伏安曲线"

图3

阴极峰电流ip与v1/2的关系"

表2

铜铝双金属复合离子液体在W盘工作电极上不同扫描速率下的CV曲线的氧化峰数据"

v/(mV?s-1)Epaa1/VEp/2a1/VIa1/(mA?cm-2)Epaa2/VEp/2a2/VIa2/(mA?cm-2)Ic2/Ia2
1000.500.3312.81-0.31-0.5421.980.57
2000.530.3914.95-0.23-0.4926.500.58
3000.580.4417.51-0.12-0.4231.680.64
4000.670.5219.52-0.09-0.3734.680.65
5000.700.5421.54-0.02-0.3538.250.66
6000.800.6223.910.05-0.3241.720.69
average0.63

表3

铜铝双金属复合离子液体在W盘工作电极上不同扫描速率下的CV曲线的还原峰数据"

v/(mV?s-1)Epcc1/VEp/2c1/VIc1/(mA?cm-2)Epcc2/VEp/2c2/VIc2/(mA?cm-2)αc2D0/(10-6cm2?s-1)
100-0.080.11-8.53-1.32-1.17-12.440.312.41
200-0.170.05-13.32-1.37-1.24-15.440.371.86
300-0.33-0.08-19.21-1.44-1.29-20.170.332.11
400-0.41-0.12-21.74-1.50-1.34-22.420.301.96
500-0.43-0.14-24.85-1.55-1.38-25.410.282.01
600-0.47-0.17-27.20-1.63-1.42-28.600.232.12
average0.302.08

图4

铜铝双金属复合离子液体在Cu丝电极上的电流-时间暂态曲线"

图5

铜铝双金属复合离子液体不同电压下电流-时间暂态无量纲曲线实验与理论对比"

表4

铜铝双金属复合离子液体长周期电沉积过程不同时间通过的电量"

Potential/VTime/hCharge/C
-2.600.540.1
-2.601.039.1
-2.601.537.7
-2.602.038.4
-2.602.537.0
-2.603.037.4
-2.603.534.1
-2.604.033.9
-2.604.534.1
-2.605.033.7
-2.605.533.9
-2.606.032.7
-2.606.532.0
-2.607.032.5
-2.607.532.4
-2.608.031.7

图6

铜铝双金属复合离子液体8 h长周期实验过程Cu(Ⅰ)浓度随时间的变化"

图7

铜铝双金属复合离子液体不同电压下获得的阴极沉积物的SEM图"

图8

-2.60 V下得到的镀层EDX面扫描谱图"

图9

铜铝双金属复合离子液体在不同电势(-1.20、-1.70、-2.60 V, vs Pt)下的电沉积产物的XRD谱图"

1 Andricacos P C, Uzoh C, Dukovic J O, et al. Damascene copper electroplating for chip interconnections[J]. IBM Journal of Research and Development, 1998, 42(5): 567-574.
2 Andricacos P C. Copper on-chip interconnections: a breakthrough in electrodeposition to make better chips[J]. The Electrochemical Society Interface, 1999, 8(1): 32-37.
3 王鸿建. 电镀工艺学[M]. 哈尔滨:哈尔滨工业大学出版社, 1995: 96-110.
Wang H J. Electroplating Technology[M]. Harbin: Harbin Institute of Technology Press, 1995: 96-110.
4 陈范才. 现代电镀技术[M]. 北京:中国纺织出版社, 2009: 155-164.
Chen F C. Modern Electroplating Technology[M]. Beijing: China Textile & Apparel Press, 2009: 155-164.
5 余德超, 谈定生. 电镀铜技术在电子材料中的应用[J]. 电镀与涂饰, 2007, 26(2): 43-47.
Yu D C, Tan D S. Applications of copper plating technology to electronic materials[J]. Electroplating & Finishing, 2007, 26(2): 43-47.
6 Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis[J]. Chemical Reviews, 1999, 99(8): 2071-2084.
7 Ispas A, Bund A. Electrodeposition in ionic liquids[J]. The Electrochemical Society Interface, 2014, 23(1): 47-51.
8 Nanjundiah C, Osteryoung R A. Electrochemical studies of Cu(Ⅰ) and Cu(Ⅱ) in an aluminum chloride‐N‐(n‐butyl)pyridinium chloride ionic liquid[J]. Journal of the Electrochemical Society, 1983, 130(6): 1312-1318.
9 Hussey C L, King L A, Carpio R A. The electrochemistry of copper in a room temperature acidic chloroaluminate melt[J]. Journal of the Electrochemical Society, 1979, 126(6): 1029-1034.
10 Chen P Y, Sun I W. Electrochemical study of copper in a basic 1-ethyl-3-methylimidazolium tetrafluoroborate room temperature molten salt[J]. Electrochimica Acta, 1999, 45(3): 441-450.
11 Shakeela K, Dithya A S, Rao C J, et al. Electrochemical behaviour of Cu(Ⅰ)/Cu(Ⅱ) redox couple in 1-hexyl-3-methylimidazolium chloride ionic liquid[J]. Journal of Chemical Sciences, 2015, 127(1): 133-140.
12 Kitada A, Yanase K, Ichii T, et al. Potentiostatic Cu-Zn alloying for polymer metallization using medium-low temperature ionic liquid baths[J]. Journal of The Electrochemical Society, 2013, 160(9): D417-D421.
13 刘海, 徐存英, 唐杰, 等. ChCl-urea-ZnO-Cu2O低共熔溶剂电镀铜锌合金[J]. 化工学报, 2018, 69(10): 4402-4408.
Liu H, Xu C Y, Tang J, et al. Electroplating of Zn-Cu alloys in ChCl-urea-ZnO-Cu2O deep eutectic solvents[J]. CIESC Journal, 2018, 69(10): 4402-4408.
14 Sun J, Ming T Y, Qian H X, et al. Electrochemical behaviors and electrodeposition of single-phase Cu-Sn alloy coating in[BMIM]Cl[J]. Electrochimica Acta, 2019, 297: 87-93.
15 Chen P Y, Deng M J, Zhuang D X. Electrochemical codeposition of copper and manganese from room-temperature n-butyl-n-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid[J]. Electrochimica Acta, 2009, 54(27): 6935-6940.
16 Wang S H, Guo X, Yang H Y W, et al. Electrodeposition mechanism and characterization of Ni-Cu alloy coatings from a eutectic-based ionic liquid[J]. Applied Surface Science, 2014, 288: 530-536.
17 Tierney B J, Pitner W R, Mitchell J A, et al. Electrodeposition of copper and copper‐aluminum alloys from a room‐temperature chloroaluminate molten salt[J]. Journal of the Electrochemical Society, 1998, 145(9): 3110-3116.
18 Assaker I B, Dhahbi M. Electrochemical study and electrodeposition of copper in the hydrophobic tri-n-octylmethylammonium chloride ionic liquid media[J]. Journal of Molecular Liquids, 2011, 161(1): 13-18.
19 孙杰, 明庭云, 钱慧璇, 等. BMIMPF6离子液体中铜沉积的电化学行为[J]. 高等学校化学学报, 2018, 39(7): 1497-1502.
Sun J, Ming T Y, Qian H X, et al. Electrochemical behavior of copper electrodeposition in BMIMPF6 ionic liquid[J]. Chemical Journal of Chinese Universities, 2018, 39(7): 1497-1502.
20 Kore R, Berton P, Kelley S P, et al. Group IIIA halometallate ionic liquids: speciation and applications in catalysis[J]. ACS Catalysis, 2017, 7(10): 7014-7028.
21 Brown L C, Hogg J M, Swadźba-kwaśny M. Lewis acidic ionic liquids[J]. Topics in Current Chemistry (Cham), 2017, 375(5): 78.
22 孟祥海, 张睿, 刘海燕, 等. 复合离子液体碳四烷基化技术开发与应用[J]. 中国科学: 化学, 2018, 48(4): 387-396.
Meng X H, Zhang R, Liu H Y, et al. Development and application of composite ionic liquid catalyzed isobutane alkylation technology[J]. Scientia Sinica(Chimica), 2018, 48(4): 387-396.
23 刘植昌, 张睿, 刘鹰, 等. 复合离子液体催化碳四烷基化反应性的研究[J]. 燃料化学学报, 2006, 34(3): 328-331.
Liu Z C, Zhang R, Liu Y, et al. Study on isobutane alkylation catalyzed by composite ionic liquid[J]. Journal of Fuel Chemistry and Technology, 2006, 34(3): 328-331.
24 韩晔华, 欧阳萍, 张艳芬, 等. 基于实时直接分析质谱技术的氯铝酸及其复合离子液体分析[J]. 中国科学: 化学, 2020, 50(6): 720-728.
Han Y H, Ouyang P, Zhang Y F, et al. Comprehensive analysis of chloroaluminate and composite ionic liquids using direct analysis in real time mass spectrometry[J]. Scientia Sinica(Chimica), 2020, 50(6): 720-728.
25 Saravanan G, Mohan S. Nucleation of copper on mild steel in copper chloride (CuCl2·2H2O)-1-ethyl-3-methylimidazolium chloride [EMIM]Cl-ethylene glycol (EG) ionic liquid[J]. New Journal of Chemistry, 2013, 37(8): 2564-2567.
26 Wang S X, Pei Q F, Xu C Y, et al. Effects of cuprous ion on electrodeposition of aluminum from AlCl3-BMIC ionic liquid[J]. Journal of The Electrochemical Society, 2021, 168(1): 012502
27 Chen P Y, Sun I W. Electrochemistry of copper in 1-methyl-3-ethylimidazolium tetrafluoroborate room temperature molten salts[J]. ECS Proceedings Volumes, 1998(1): 55-65.
28 Zhang Y N, Zhang R, Wu L, et al. Solubilities, structures, and speciations of bimetallic composite ionic liquids: X-ray absorption fine structure and density functional theory calculations[J]. Industrial & Engineering Chemistry Research, 2021, 60(20): 7535-7544.
29 Li Q B, Jiang J Y, Li G F, et al. The electrochemical stability of ionic liquids and deep eutectic solvents[J]. Science China Chemistry, 2016, 59(5): 571-577.
30 Endres F, Schweizer A. The electrodeposition of copper on Au(111) and on HOPG from the 66/34 mol% aluminium chloride/1-butyl-3-methylimidazolium chloride room temperature molten salt: an EC-STM study[J]. Physical Chemistry Chemical Physics, 2000, 2(23): 5455-5462.
31 Suneesh P V, Satheesh Babu T G, Ramachandran T. Electrodeposition of aluminium and aluminium-copper alloys from a room temperature ionic liquid electrolyte containing aluminium chloride and triethylamine hydrochloride[J]. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(9): 909-916.
32 Sebastián P, Vallés E, Gómez E. Copper electrodeposition in a deep eutectic solvent. First stages analysis considering Cu(Ⅰ) stabilization in chloride media[J]. Electrochimica Acta, 2014, 123: 285-295.
33 Abbott A P, El Ttaib K, Frisch G, et al. Electrodeposition of copper composites from deep eutectic solvents based on choline chloride[J]. Physical Chemistry Chemical Physics, 2009, 11(21): 4269-4277.
34 Scharifker B, Hills G. Theoretical and experimental studies of multiple nucleation[J]. Electrochimica Acta, 1983, 28(7): 879-889.
35 Gunawardena G, Hills G, Montenegro I, et al. Electrochemical nucleation(I): General considerations[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 138(2): 225-239.
36 陈国华, 王光信. 电化学方法应用[M]. 北京:化学工业出版社, 2003: 2-5.
Chen G H, Wang G X. Application of Electrochemical Methods[M]. Beijing:Chemical Industry Press, 2003: 2-5.
[1] 褚有群, 葛展榜, 焦玉峰, 张建平, 郭冠璇, 朱英红. 有机-水混合溶剂中氯离子对C—H键的电氧化腈化性能[J]. 化工学报, 2022, 73(7): 3018-3025.
[2] 张昕哲, 孙文涛, 吕波, 李春. 植物天然产物氧化与微生物制造[J]. 化工学报, 2022, 73(7): 2790-2805.
[3] 李彬, 宋文明, 杨坤龙, 姜爽, 张天永. 水系有机液流电池活性材料的分子工程研究进展[J]. 化工学报, 2022, 73(7): 2806-2818.
[4] 李亚飞, 邓建强, 何阳. 跨临界CO2快速膨胀过程中非平衡冷凝和闪蒸机理的数值研究[J]. 化工学报, 2022, 73(7): 2912-2923.
[5] 苏晨昱, 杨颖, 宋兴福. 岩盐矿提钾老卤中溴离子选择性电氧化过程研究[J]. 化工学报, 2022, 73(7): 3007-3017.
[6] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[7] 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789.
[8] 王沛, 魏荣阔. 光热驱动多孔氧化铈热化学循环解水制氢非热质平衡模型[J]. 化工学报, 2022, 73(7): 2885-2894.
[9] 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173.
[10] 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305.
[11] 李智超, 郑瑜, 张润楠, 姜忠义. 高通量抗污染氧化石墨烯膜研究进展[J]. 化工学报, 2022, 73(6): 2370-2380.
[12] 白文轩, 陈锦湘, 刘芬, 张静淙, 谷志平, 熊成铭, 施王军, 余江. 非水相金属基离子液体湿法氧化脱硫工艺:发展与展望[J]. 化工学报, 2022, 73(5): 1847-1862.
[13] 刘庆祎, 肖桐, 孙文杰, 张家豪, 刘昌会. 纳米二氧化钛强化的相变储能研究进展[J]. 化工学报, 2022, 73(5): 1863-1882.
[14] 付雪, 陈婷婷, 陈婷婷, 许映杰. 离子液体的电导性质研究进展[J]. 化工学报, 2022, 73(5): 1883-1893.
[15] 李淼, 赵虹, 姜标, 陈思远, 闫龙. 煤制乙炔关键中间体BaC2合成的热力学分析[J]. 化工学报, 2022, 73(5): 1908-1919.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!