化工学报 ›› 2022, Vol. 73 ›› Issue (8): 3483-3500.DOI: 10.11949/0438-1157.20220284
唐恺鸿1,2(), 何晓峰1, 徐桂秋1, 于洋1, 刘啸凤1, 葛铁军1,2(), 张爱玲2()
收稿日期:
2022-02-27
修回日期:
2022-06-08
出版日期:
2022-08-05
发布日期:
2022-09-06
通讯作者:
葛铁军,张爱玲
作者简介:
唐恺鸿(1994—),女,博士研究生,t_angkh@163.com
基金资助:
Kaihong TANG1,2(), Xiaofeng HE1, Guiqiu XU1, Yang YU1, Xiaofeng LIU1, Tiejun GE1,2(), Ailing ZHANG2()
Received:
2022-02-27
Revised:
2022-06-08
Online:
2022-08-05
Published:
2022-09-06
Contact:
Tiejun GE, Ailing ZHANG
摘要:
酚醛泡沫因兼具优异的保温性能和阻燃性能在工程领域得到广泛应用,但其经高温燃烧后质量残留率很低,炭层疏松、强度低,离开火焰后还易出现阴燃现象。目前有关酚醛泡沫燃烧行为的研究大多集中在如何进一步提高酚醛泡沫塑料的阻燃等级或在改善其脆性的同时不降低固有的阻燃性能,还未见关于酚醛泡沫燃烧全过程行为的综述报道。文章介绍了酚醛泡沫在明火燃烧和阴燃状态的燃烧行为,分析了影响酚醛泡沫燃烧行为的因素,并总结了现有酚醛泡沫阻燃研究的进展。目前酚醛泡沫的燃烧行为及阻燃研究主要集中在泡沫的明火燃烧,对酚醛泡沫阴燃问题的研究重视不足,缺乏针对酚醛泡沫燃烧全过程的行为和机理探究。因此,提出应加大对酚醛泡沫阴燃行为的研究投入,注重对酚醛泡沫燃烧全过程的机理探索与阻燃方案研究,设计并研发出解决酚醛泡沫燃烧全过程问题的有效途径。
中图分类号:
唐恺鸿, 何晓峰, 徐桂秋, 于洋, 刘啸凤, 葛铁军, 张爱玲. 酚醛泡沫的燃烧行为及阻燃研究进展[J]. 化工学报, 2022, 73(8): 3483-3500.
Kaihong TANG, Xiaofeng HE, Guiqiu XU, Yang YU, Xiaofeng LIU, Tiejun GE, Ailing ZHANG. Review on combustion behavior and flame retardant research of phenolic foams[J]. CIESC Journal, 2022, 73(8): 3483-3500.
阻燃剂类型 | 阻燃剂 | 分子结构 | LOI/% | pHRR变化率 | 文献 |
---|---|---|---|---|---|
磷系阻燃剂 | DOPO-木纤维 | 35.0 | — | [ | |
磷系阻燃剂 | DOPO-木纤维 | 35.2 | — | [ | |
磷系阻燃剂 | DOPO-微晶纤维素 | 46.0 | — | [ | |
磷系阻燃剂 | DOPO-衣康酸-乙基纤维素 | 37.1 | — | [ | |
磷系阻燃剂 | 含磷聚醚增韧剂 | 49.5 | 41.5%↓ | [ | |
磷系阻燃剂 | 聚乙二醇磷酸盐 | 45.1 | 28.3%↓ | [ |
表1 加入不同阻燃剂的酚醛泡沫塑料阻燃性能
Table 1 Flame retardancy of phenolic foams with different flame retardants
阻燃剂类型 | 阻燃剂 | 分子结构 | LOI/% | pHRR变化率 | 文献 |
---|---|---|---|---|---|
磷系阻燃剂 | DOPO-木纤维 | 35.0 | — | [ | |
磷系阻燃剂 | DOPO-木纤维 | 35.2 | — | [ | |
磷系阻燃剂 | DOPO-微晶纤维素 | 46.0 | — | [ | |
磷系阻燃剂 | DOPO-衣康酸-乙基纤维素 | 37.1 | — | [ | |
磷系阻燃剂 | 含磷聚醚增韧剂 | 49.5 | 41.5%↓ | [ | |
磷系阻燃剂 | 聚乙二醇磷酸盐 | 45.1 | 28.3%↓ | [ |
阻燃剂类型 | 阻燃剂 | LOI/% | pHRR 变化率 | 文献 |
---|---|---|---|---|
纳米颗粒 | TiN | 34.2 | — | [ |
纳米颗粒 | SiO2 | 38.0 | — | [ |
纳米颗粒 | Al2O3 | 39.3 | 8.3%↓ | [ |
纳米颗粒 | ZrO2 | 38.9 | 2.8%↓ | [ |
磷-氮系阻燃剂/ 纳米颗粒 | APP/ZnO | 73.0 | >75.0%↓ | [ |
磷-氮系阻燃剂/ 纳米颗粒 | APP/MoO3 | 71.0 | >75.0%↓ | [ |
磷-氮系阻燃剂/ 纳米颗粒 | APP/CuCl2 | 71.5 | >75.0%↓ | [ |
磷-氮系阻燃剂/ 纳米颗粒 | APP/SnCl2 | 72.0 | >75.0%↓ | [ |
纤维/纳米颗粒 | 玻璃纤维/ 纳米黏土 | 32.0 | 12.7%↓ | [ |
— | 氧化石墨烯 | 40.0 | 22.2%↓ | [ |
纳米颗粒/氧化石墨烯 | 磷酸锆-氧化 石墨烯 | 42.5 | 25.0%↓ | [ |
纳米颗粒/氧化石墨烯 | SiO2-氧化石墨烯 | 41.0 | 21.4%↓ | [ |
纳米颗粒/氧化石墨烯 | CoAl-氧化石墨烯 | 38.5 | 8.4%↓ | [ |
表2 加入不同纳米级无机阻燃剂的酚醛泡沫塑料阻燃性能
Table 2 Flame retardancy of phenolic foams with different nanoscale inorganic flame retardants
阻燃剂类型 | 阻燃剂 | LOI/% | pHRR 变化率 | 文献 |
---|---|---|---|---|
纳米颗粒 | TiN | 34.2 | — | [ |
纳米颗粒 | SiO2 | 38.0 | — | [ |
纳米颗粒 | Al2O3 | 39.3 | 8.3%↓ | [ |
纳米颗粒 | ZrO2 | 38.9 | 2.8%↓ | [ |
磷-氮系阻燃剂/ 纳米颗粒 | APP/ZnO | 73.0 | >75.0%↓ | [ |
磷-氮系阻燃剂/ 纳米颗粒 | APP/MoO3 | 71.0 | >75.0%↓ | [ |
磷-氮系阻燃剂/ 纳米颗粒 | APP/CuCl2 | 71.5 | >75.0%↓ | [ |
磷-氮系阻燃剂/ 纳米颗粒 | APP/SnCl2 | 72.0 | >75.0%↓ | [ |
纤维/纳米颗粒 | 玻璃纤维/ 纳米黏土 | 32.0 | 12.7%↓ | [ |
— | 氧化石墨烯 | 40.0 | 22.2%↓ | [ |
纳米颗粒/氧化石墨烯 | 磷酸锆-氧化 石墨烯 | 42.5 | 25.0%↓ | [ |
纳米颗粒/氧化石墨烯 | SiO2-氧化石墨烯 | 41.0 | 21.4%↓ | [ |
纳米颗粒/氧化石墨烯 | CoAl-氧化石墨烯 | 38.5 | 8.4%↓ | [ |
改性方法 | 改性剂 | 分子结构 | LOI/% | pHRR变化率 | 文献 |
---|---|---|---|---|---|
整体投料 | 双氰胺 | 48.1 | 19.1%↓ | [ | |
羟甲基苯酚改性 | 双酚A二缩水甘油醚 | — | 133.0%↑ | [ | |
羟甲基苯酚改性 | 溴化双酚A环氧树脂 | — | 37.7%↓ | [ | |
羟甲基苯酚改性 | 蒙脱土/生物油 | 39.7 | — | [ | |
原材料替代 | 含羞草树皮单宁 | — | 88.7%↓ | [ | |
原材料替代 | 磺化落叶松单宁 | 47.8 | — | [ | |
原材料替代 | 硫酸盐木质素 | 34.0 | 0.4%↑ | [ | |
原材料替代 | HBr催化木质素 | 43.6 | — | [ |
表3 化学改性酚醛泡沫塑料的阻燃性能
Table 3 Flame retardancy of chemically modified phenolic foams
改性方法 | 改性剂 | 分子结构 | LOI/% | pHRR变化率 | 文献 |
---|---|---|---|---|---|
整体投料 | 双氰胺 | 48.1 | 19.1%↓ | [ | |
羟甲基苯酚改性 | 双酚A二缩水甘油醚 | — | 133.0%↑ | [ | |
羟甲基苯酚改性 | 溴化双酚A环氧树脂 | — | 37.7%↓ | [ | |
羟甲基苯酚改性 | 蒙脱土/生物油 | 39.7 | — | [ | |
原材料替代 | 含羞草树皮单宁 | — | 88.7%↓ | [ | |
原材料替代 | 磺化落叶松单宁 | 47.8 | — | [ | |
原材料替代 | 硫酸盐木质素 | 34.0 | 0.4%↑ | [ | |
原材料替代 | HBr催化木质素 | 43.6 | — | [ |
1 | Song X R, Xiao W X, Wang P, et al. Hollow glass microspheres-based ultralight non-combustible thermal insulation foam with point-to-point binding structure using solvent evaporation method[J]. Construction and Building Materials, 2021, 292: 123415. |
2 | Farhan S, Wang R M, Jiang H, et al. Use of waste rigid polyurethane for making carbon foam with fireproofing and anti-ablation properties[J]. Materials & Design, 2016, 101: 332-339. |
3 | Mougel C, Garnier T, Cassagnau P, et al. Phenolic foams: a review of mechanical properties, fire resistance and new trends in phenol substitution[J]. Polymer, 2019, 164: 86-117. |
4 | Kim M, Choe J, Lee D G. Development of the fire-retardant sandwich structure using an aramid/glass hybrid composite and a phenolic foam-filled honeycomb[J]. Composite Structures, 2016, 158: 227-234. |
5 | Pilato L. Phenolic Resins: a Century of Progress[M]. Berlin: Springer, 2010: 189-208. |
6 | 艾江. 酚醛保温材料的性能及发展趋势[J]. 上海塑料, 2016(1): 32-34. |
Ai J. Performance and development trend of phenolic thermal insulation material[J]. Shanghai Plastics, 2016(1): 32-34. | |
7 | Song F, Jia P Y. Flame retardant modification of phenolic foam [M]// Sandhya P K, Sreekala M S, Sabu T. Phenolic Based Foams . Singapore: Springer, 2022: 195-207. |
8 | McKenna S T, Jones N, Peck G, et al. Fire behaviour of modern façade materials—understanding the Grenfell Tower fire[J]. Journal of Hazardous Materials, 2019, 368: 115-123. |
9 | Sun S B, Ma B G, Chen M, et al. Heating process of thermosetting insulation materials for buildings[J]. Journal of Wuhan University of Technology—Mater. Sci. Ed., 2012, 27(5): 962-966. |
10 | Papadogianni V, Romeos A, Giannadakis A, et al. Cone calorimeter and thermogravimetric analysis of glass phenolic composites used in aircraft applications[J]. Fire Technology, 2020, 56(3): 1253-1285. |
11 | Tang K H, Zhang A L, Ge T J, et al. Research progress on modification of phenolic resin[J]. Materials Today Communications, 2021, 26: 101879. |
12 | 马俊杰, 程珏, 杨万泰. 多聚甲醛/苯酚树脂活性和性能[J]. 化工学报, 2006, 57(7): 1689-1693. |
Ma J J, Cheng J, Yang W T. Reactivity and property of phenolic resin synthesized by phenol and paraformaldehyde[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(7): 1689-1693. | |
13 | Bo C Y, Shi Z Y, Hu L H, et al. Cardanol derived P, Si and N based precursors to develop flame retardant phenolic foam[J]. Scientific Reports, 2020, 10: 12082. |
14 | Ge T J, Tang K H, Zhang A L. Toughened phenolic foams [M]// Sandhya P K, Sreekala M S, Sabu T. Phenolic Based Foams. Singapore: Springer, 2022: 81-101. |
15 | Lazar S T, Kolibaba T J, Grunlan J C. Flame-retardant surface treatments[J]. Nature Reviews Materials, 2020, 5(4): 259-275. |
16 | Hidalgo J P, Torero J L, Welch S. Fire performance of closed-cell charring insulation materials in plasterboard-insulation assemblies[J]. Fire and Materials, 2019, 43(6): 632-643. |
17 | Hidalgo J P, Torero J L, Welch S. Fire performance of charring closed-cell polymeric insulation materials: polyisocyanurate and phenolic foam[J]. Fire and Materials, 2018, 42(4): 358-373. |
18 | Hidalgo J P, Torero J L, Welch S. Experimental characterisation of the fire behaviour of thermal insulation materials for a performance-based design methodology[J]. Fire Technology, 2017, 53(3): 1201-1232. |
19 | Torero J L, Gerhard J I, Martins M F, et al. Processes defining smouldering combustion: integrated review and synthesis[J]. Progress in Energy and Combustion Science, 2020, 81: 100869. |
20 | Lin S R, Huang X Y. Quenching of smoldering: effect of wall cooling on extinction[J]. Proceedings of the Combustion Institute, 2021, 38(3): 5015-5022. |
21 | Huang X Y, Gao J. A review of near-limit opposed fire spread[J]. Fire Safety Journal, 2021, 120: 103141. |
22 | 卓萍, 赵璧, 王国辉. 典型保温材料阴燃特性研究[C]//2015年中国阻燃学术年会论文集. 杭州:中国兵工学会, 中国阻燃学会, 2015: 454-458. |
Zhuo P, Zhao B, Wang G H. Research on smoldering characteristics of typical thermal insulation materials[C]//2015 China Flame Retardant Academic Annual Conference Proceedings. Hangzhou: China Ordnance Society, China Flame Retardant Society, 2015: 454-458. | |
23 | Wang Y, Wang S J, Bian C, et al. Effect of chemical structure and cross-link density on the heat resistance of phenolic resin[J]. Polymer Degradation and Stability, 2015, 111: 239-246. |
24 | Jiang H Y, Wang J G, Wu S Q, et al. The pyrolysis mechanism of phenol formaldehyde resin[J]. Polymer Degradation and Stability, 2012, 97(8): 1527-1533. |
25 | 朱其仁, 李锦春, 王丽娟, 等. 苯酚-亚联苯型酚醛树脂的合成与表征[J]. 化工学报, 2009, 60(4): 1052-1056. |
Zhu Q R, Li J C, Wang L J, et al. Synthesis and characterization of phenol-biphenylene resin[J]. CIESC Journal, 2009, 60(4): 1052-1056. | |
26 | Zhang W, Ma Y F, Chu F X, et al. The influence of formaldehyde/phenol ratio on properties of foamable phenolic resin and phenolic foam[J]. Advanced Materials Research, 2011, 250/251/252/253: 523-527. |
27 | Hu X M, Zhao Y Y, Cheng W M. Effect of formaldehyde/phenol ratio (F/P) on the properties of phenolic resins and foams synthesized at room temperature[J]. Polymer Composites, 2015, 36(8): 1531-1540. |
28 | Chen X K, Yu W C, Ma L, et al. Mechanical properties and thermal characteristics of different-density phenolic foams[J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(2): 393-401. |
29 | Tang K H, He X F, Xu G Q, et al. Effect of formaldehyde to phenol molar ratio on combustion behavior of phenolic foam[J]. Polymer Testing, 2022, 111: 107626. |
30 | 孙艺, 姜润韬, 金晶, 等. 高分子材料阻燃与抑烟的分立设计思想[J]. 化工学报, 2022, 73(1): 18-31. |
Sun Y, Jiang R T, Jin J, et al. Separation design strategy for flame retardancy and smoke suppression of polymer materials[J]. CIESC Journal, 2022, 73(1): 18-31. | |
31 | Ma Y F, Geng X, Zhang X, et al. A novel DOPO-g-KH550 modification wood fibers and its effects on the properties of composite phenolic foams[J]. Polish Journal of Chemical Technology, 2018, 20(2): 47-53. |
32 | Ma Y F, Wang C P, Chu F X. Effects of fiber surface treatments on the properties of wood fiber-phenolic foam composites[J]. BioResources, 2017, 12(3): 4722-4736. |
33 | Gao L, Tang Q H, Chen Y P, et al. Investigation of novel lightweight phenolic foam-based composites reinforced with flax fiber mats[J]. Polymer Composites, 2018, 39(6): 1809-1817. |
34 | Liu J, Wang L L, Zhang W, et al. Phenolic resin foam composites reinforced by acetylated poplar fiber with high mechanical properties, low pulverization ratio, and good thermal insulation and flame retardant performance[J]. Materials, 2020, 13(1): 148. |
35 | Ma Y, Geng X, Zhang X, et al. Synthesis of DOPO-g-GPTS modified wood fiber and its effects on the properties of composite phenolic foams[J]. Journal of Applied Polymer Science, 2019, 136(2): 46917. |
36 | Ma Y F, Gong X N, Jia P Y. The effects of DOPO-g-ITA modified microcrystalline cellulose on the properites of composite phenolic foams[J]. Journal of Renewable Materials, 2020, 8(1): 45-55. |
37 | Ma Y F, Gong X N, Liao C H, et al. Preparation and characterization of DOPO-ITA modified ethyl cellulose and its application in phenolic foams[J]. Polymers, 2018, 10(10): 1049. |
38 | Yang H Y, Wang X, Yuan H X, et al. Fire performance and mechanical properties of phenolic foams modified by phosphorus-containing polyethers[J]. Journal of Polymer Research, 2012, 19(3): 9831. |
39 | Sui X Y, Wang Z Z. Flame-retardant and mechanical properties of phenolic foams toughened with polyethylene glycol phosphates[J]. Polymers for Advanced Technologies, 2013, 24(6): 593-599. |
40 | Xu S H, Sui X Y, Wang Z Z. Flammability and mechanical properties of toughened phenolic foams containing APP, MP and MCA[J]. Advanced Materials Research, 2013, 671/672/673/674: 1809-1812. |
41 | Liu L, Wang Z Z. Facile synthesis of a novel magnesium amino-tris-(methylenephosphonate)-reduced graphene oxide hybrid and its high performance in mechanical strength, thermal stability, smoke suppression and flame retardancy in phenolic foam[J]. Journal of Hazardous Materials, 2018, 357: 89-99. |
42 | Ding H Y, Wang J F, Liu J, et al. Preparation and properties of a novel flame retardant polyurethane quasi-prepolymer for toughening phenolic foam[J]. Journal of Applied Polymer Science, 2015, 132(35): 42424. |
43 | Bo C Y, Wei S K, Hu L H, et al. Synthesis of a cardanol-based phosphorus-containing polyurethane prepolymer and its application in phenolic foams[J]. RSC Advances, 2016, 6(67): 62999-63005. |
44 | Yuan H X, Xing W Y, Yang H Y, et al. Mechanical and thermal properties of phenolic/glass fiber foam modified with phosphorus-containing polyurethane prepolymer[J]. Polymer International, 2013, 62(2): 273-279. |
45 | Bo C Y, Yang X H, Hu L H, et al. Enhancement of flame-retardant and mechanical performance of phenolic foam with the incorporation of cardanol-based siloxane[J]. Polymer Composites, 2019, 40(6): 2539-2547. |
46 | Yang H Y, Wang X, Yu B, et al. A novel polyurethane prepolymer as toughening agent: preparation, characterization, and its influence on mechanical and flame retardant properties of phenolic foam[J]. Journal of Applied Polymer Science, 2013, 128(5): 2720-2728. |
47 | 张西莹, 刘育红. 酚醛树脂/碳化硼/聚硼氮烷复合物的固化行为及其热解性能[J]. 化工学报, 2014, 65(8): 3268-3276. |
Zhang X Y, Liu Y H. Curing and pyrolysis behavior of PF/B4C/PBZ composite[J]. CIESC Journal, 2014, 65(8): 3268-3276. | |
48 | Liu L, Fu M T, Wang Z Z. Synthesis of boron-containing toughening agents and their application in phenolic foams[J]. Industrial & Engineering Chemistry Research, 2015, 54(7): 1962-1970. |
49 | Xu W Z, Chen R, Xu J Y, et al. Preparation and mechanism of polyurethane prepolymer and boric acid co-modified phenolic foam composite: mechanical properties, thermal stability, and flame retardant properties[J]. Polymers for Advanced Technologies, 2019, 30(7): 1738-1750. |
50 | Hu L F, Wang Z Z, Zhao Q L. Flame retardant and mechanical properties of toughened phenolic foams containing a melamine phosphate borate[J]. Polymer-Plastics Technology and Engineering, 2017, 56(6): 678-686. |
51 | Kumar S A, Kumar S A, Nagaraja B K. Thermal stability and flammability characteristics of phenolic syntactic foam core sandwich composites[J]. Journal of Sandwich Structures & Materials, 2021, 23(7): 3234-3249. |
52 | 葛铁军, 王佳, 肖尚雄. 成核剂对酚醛泡沫微观结构及性能的影响[J]. 塑料科技, 2016, 44(11): 41-46. |
Ge T J, Wang J, Xiao S X. Effects of nucleating agent on microstructure and properties of phenolic foam[J]. Plastics Science and Technology, 2016, 44(11): 41-46. | |
53 | Li Q L, Chen L, Li X H, et al. Effect of nano-titanium nitride on thermal insulating and flame-retardant performances of phenolic foam[J]. Journal of Applied Polymer Science, 2016, 133(32): 43765. |
54 | Yuan J J, Zhang Y B, Wang Z Z. Phenolic foams toughened with crosslinked poly (n-butyl acrylate)/silica core-shell nanocomposite particles[J]. Journal of Applied Polymer Science, 2015, 132(40): 42590. |
55 | Zhu Y X, Wang Z Z. Phenolic foams, modified by nano-metallic oxides, improved in mechanical strengths and friability[J]. Iranian Polymer Journal, 2016, 25(7): 579-587. |
56 | Ma Y F, Wang J F, Xu Y Z, et al. Preparation and characterization of phenolic foams with eco-friendly halogen-free flame retardant[J]. Journal of Thermal Analysis and Calorimetry, 2013, 114(3): 1143-1151. |
57 | Hu X M, Cheng W M, Nie W, et al. Flame retardant, thermal, and mechanical properties of glass fiber/nanoclay reinforced phenol-urea-formaldehyde foam[J]. Polymer Composites, 2016, 37(8): 2323-2332. |
58 | Li X Y, Wang Z Z, Wu L X, et al. One-step in situ synthesis of a novel α-zirconium phosphate/graphene oxide hybrid and its application in phenolic foam with enhanced mechanical strength, flame retardancy and thermal stability[J]. RSC Advances, 2016, 6(78): 74903-74912. |
59 | Li X Y, Wang Z Z, Wu L X. Preparation of a silica nanospheres/graphene oxide hybrid and its application in phenolic foams with improved mechanical strengths, friability and flame retardancy[J]. RSC Advances, 2015, 5(121): 99907-99913. |
60 | Wang Z Z, Li X Y. Synthesis of CoAl-layered double hydroxide/graphene oxide nanohybrid and its reinforcing effect in phenolic foams[J]. High Performance Polymers, 2018, 30(6): 688-698. |
61 | Li Q L, Chen L, Li X H, et al. Effect of multi-walled carbon nanotubes on mechanical, thermal and electrical properties of phenolic foam via in situ polymerization[J]. Composites Part A: Applied Science and Manufacturing, 2016, 82: 214-225. |
62 | Tang K H, Yu Y, Xu G Q, et al. Preparation of a ceramifiable phenolic foam and its ceramization behavior[J]. Polymers, 2022, 14(8): 1591. |
63 | 王建, 雷子萱, 姚家钰, 等. 对苯二甲醛酚醛树脂的制备及其固化动力学研究[J]. 化工学报, 2022, 73(3): 1403-1415. |
Wang J, Lei Z X, Yao J Y, et al. Synthesis and curing kinetics of terephthalaldehyde phenolic resin[J]. CIESC Journal, 2022, 73(3): 1403-1415. | |
64 | Ge T J, Tang K H, Tang X J. Preparation and properties of acetoacetic ester-terminated polyether pre-synthesis modified phenolic foam[J]. Materials, 2019, 12(3): 334. |
65 | Xu P P, Yu Y X, Chang M M, et al. Preparation and characterization of bio-oil phenolic foam reinforced with montmorillonite[J]. Polymers, 2019, 11(9): 1471. |
66 | Chen X Y, Li J X, Essawy H, et al. Flame-retardant and thermally-insulating tannin and soybean protein isolate (SPI) based foams for potential applications in building materials[J]. Construction and Building Materials, 2022, 315: 125711. |
67 | Ge T J, Tang K H, Yu Y, et al. Preparation and properties of the 3-pentadecyl-phenol in situ modified foamable phenolic resin[J]. Polymers, 2018, 10(10): 1124. |
68 | Gao M, Wu W H, Wang Y H, et al. Phenolic foam modified with dicyandiamide as toughening agent[J]. Journal of Thermal Analysis and Calorimetry, 2016, 124(1): 189-195. |
69 | Auad M L, Zhao L H, Shen H B, et al. Flammability properties and mechanical performance of epoxy modified phenolic foams[J]. Journal of Applied Polymer Science, 2007, 104(3): 1399-1407. |
70 | Yu Y X, Wang Y F, Xu P P, et al. Preparation and characterization of phenolic foam modified with bio-oil[J]. Materials, 2018, 11(11): 2228. |
71 | Delgado-Sánchez C, Sarazin J, Santiago-Medina F J, et al. Impact of the formulation of biosourced phenolic foams on their fire properties[J]. Polymer Degradation and Stability, 2018, 153: 1-14. |
72 | Li J J, Zhang A B, Zhang S F, et al. Larch tannin-based rigid phenolic foam with high compressive strength, low friability, and low thermal conductivity reinforced by cork powder[J]. Composites Part B: Engineering, 2019, 156: 368-377. |
73 | 葛铁军, 唐恺鸿, 于洋, 等. 间十五烷基酚对酚醛泡沫的改性[J]. 工程塑料应用, 2018, 46(9): 29-34. |
Ge T J, Tang K H, Yu Y, et al. Reasearch on 3-pentadecyl-phenol modified phenolic foam[J]. Engineering Plastics Application, 2018, 46(9): 29-34. | |
74 | Li B, Yuan Z S, Schmidt J, et al. New foaming formulations for production of bio-phenol formaldehyde foams using raw kraft lignin[J]. European Polymer Journal, 2019, 111: 1-10. |
75 | Gao C, Li M, Zhu C J, et al. One-pot depolymerization, demethylation and phenolation of lignin catalyzed by HBr under microwave irradiation for phenolic foam preparation[J]. Composites Part B: Engineering, 2021, 205: 108530. |
76 | Bo C Y, Hu L H, Chen Y, et al. Synthesis of a novel cardanol-based compound and environmentally sustainable production of phenolic foam[J]. Journal of Materials Science, 2018, 53(15): 10784-10797. |
77 | Ma Y F, Gong X N, Xie B, et al. Synthesis and characterization of DOPO-g-CNSL and its effect on the properties of phenolic foams[J]. Journal of Renewable Materials, 2019, 7(10): 1037-1046. |
78 | Song F, Jia P Y, Bo C Y, et al. Preparation and characterization of tung oil toughened modified phenolic foams with enhanced mechanical properties and smoke suppression[J]. Journal of Renewable Materials, 2020, 8(5): 535-547. |
79 | Song F, Li Z, Jia P Y, et al. Phosphorus-containing tung oil-based siloxane toughened phenolic foam with good mechanical properties, fire performance and low thermal conductivity[J]. Materials & Design, 2020, 192: 108668. |
80 | Song F, Jia P Y, Xiao Y N, et al. Study on toughening phenolic foams in phosphorus-containing tung oil-based derivatives[J]. Journal of Renewable Materials, 2019, 7(10): 1011-1021. |
81 | Li T T, Yu R B, Zhao D D. Effective halogen- and phosphorus-free polyphenylene ether resin-based flame-retardant foam[J]. ACS Omega, 2021, 6(23): 15246-15256. |
82 | Ge T J, Hu X Q, Tang K H, et al. The preparation and properties of terephthalyl-alcohol-modified phenolic foam with high heat aging resistance[J]. Polymers, 2019, 11(8): 1267. |
83 | 葛铁军, 胡晓岐, 王东奇. 4, 4'-二氯二苯砜改性酚醛泡沫的制备及其耐热性能[J]. 工程塑料应用, 2019, 47(11): 7-12. |
Ge T J, Hu X Q, Wang D Q. Preparation and heat resistance of 4, 4'-dichlorodiphenyl sulfone modified phenolic foams[J]. Engineering Plastics Application, 2019, 47(11): 7-12. | |
84 | 葛铁军, 唐恺鸿, 王东奇, 等. 芳烷基醚改性可发性酚醛树脂的制备及性能[J]. 塑料科技, 2018, 46(12): 84-89. |
Ge T J, Tang K H, Wang D Q, et al. Preparation and properties of aralkyl ether modified foamable phenolic resin[J]. Plastics Science and Technology, 2018, 46(12): 84-89. | |
85 | Chen G L, Liu J, Zhang W, et al. Lignin-based phenolic foam reinforced by poplar fiber and isocyanate-terminated polyurethane prepolymer[J]. Polymers, 2021, 13(7): 1068. |
86 | Song F, Jia P Y, Bo C Y, et al. The mechanical and flame retardant characteristics of lignin-based phenolic foams reinforced with MWCNTs by in situ polymerization[J]. Journal of Dispersion Science and Technology, 2021, 42(7): 1042-1051. |
87 | Zhang L F, Liang S Q, Chen Z L. Influence of particle size and addition of recycling phenolic foam on mechanical and flame retardant properties of wood-phenolic composites[J]. Construction and Building Materials, 2018, 168: 1-10. |
[1] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[2] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[3] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[4] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[5] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[6] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[7] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[8] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[9] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[10] | 龙臻, 王谨航, 何勇, 梁德青. 离子液体与动力学抑制剂作用下混合气体水合物生成特性研究[J]. 化工学报, 2023, 74(4): 1703-1711. |
[11] | 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826. |
[12] | 吕阳光, 左培培, 杨正金, 徐铜文. 三嗪框架聚合物膜用于有机纳滤甲醇/正己烷分离[J]. 化工学报, 2023, 74(4): 1598-1606. |
[13] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[14] | 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586. |
[15] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||