化工学报 ›› 2022, Vol. 73 ›› Issue (9): 4015-4024.DOI: 10.11949/0438-1157.20220461

• 生物化学工程与技术 • 上一篇    下一篇

大肠杆菌偏利共培养系统合成大豆苷元

刘雪1,2(), 张莉娟1,2(), 赵广荣1,2()   

  1. 1.天津大学化工学院,教育部合成生物学前沿科学中心,系统生物工程教育部重点实验室,天津 300350
    2.天津大学佐治亚理工深圳学院,广东 深圳 518055
  • 收稿日期:2022-03-30 修回日期:2022-05-30 出版日期:2022-09-05 发布日期:2022-10-09
  • 通讯作者: 赵广荣
  • 作者简介:刘雪(1992—),女,博士研究生,1208644284@qq.com
    张莉娟(1997—),女,硕士研究生,zljsuoxin@163.com
  • 基金资助:
    国家自然科学基金项目(31870077);广东省重点领域研发计划项目(2020B0303070002)

Commensalistic Escherichia coli coculture for biosynthesis of daidzein

Xue LIU1,2(), Lijuan ZHANG1,2(), Guangrong ZHAO1,2()   

  1. 1.Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
    2.Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518055, Guangdong, China
  • Received:2022-03-30 Revised:2022-05-30 Online:2022-09-05 Published:2022-10-09
  • Contact: Guangrong ZHAO

摘要:

大豆苷元是一种植物雌激素,具有多种生物活性,但在大肠杆菌中的生物全合成还未见报道。基于大豆苷元合成途径的三个模块(对香豆酸、甘草素和大豆苷元模块),构建大肠杆菌共培养系统从头合成大豆苷元。将对香豆酸和甘草素模块分配到两株大肠杆菌中构建双菌共培养系统,合成甘草素。在此基础上,探索了三种共培养模式合成大豆苷元,结果显示,三菌共培养系统比其他两种双菌共培养系统的产量更高,达到27.8 mg/L。共培养菌株间通过苯丙氨酸的单向流动形成了偏利共生的关系,有助于平衡代谢途径,提高大豆苷元产量。该共培养系统在大肠杆菌中实现大豆苷元的从头合成,为其他黄酮类化合物的生物合成提供了即插即用的平台。

关键词: 合成生物学, 代谢工程, 大豆苷元, 大肠杆菌, 共培养系统, 偏利共生

Abstract:

Daidzein is a phytoestrogen with various biological activities, but its total biosynthesis in Escherichia coli has not been reported. The biosynthetic pathway of daidzein was divided into three modules, namely, the p-coumaric acid, liquiritigenin, and daidzein modules to engineer coculture systems for the biosynthesis of daidzein. First, to synthesize the precursor liquiritigenin, the p-coumaric acid and liquiritigenin modules were distributed into two E. coli strains to construct a two-strain coculture. Based on this, three coculture patterns were explored for the biosynthesis of daidzein. The results showed that the three-strain coculture produced 27.8 mg/L daidzein, which was superior to the other two two-strain coculture systems. Commensalism of the engineered strains was established through a unidirectional flow of phenylalanine, which benefited the pathway balance and daidzein production. The coculture system in this study realized the de novo biosynthesis of daidzein in engineered E. coli, and provided a plug-and-play platform for the biosynthesis of other flavonoids.

Key words: synthetic biology, metabolic engineering, daidzein, Escherichia coli, coculture, commensalism

中图分类号: