化工学报 ›› 2023, Vol. 74 ›› Issue (10): 3995-4019.DOI: 10.11949/0438-1157.20230583
周惠敏1,2(), 田莹1,2(), 刘思亿1, 邹佳航1, 张润泽1, 贺常晴1,2(), 何林1,2(), 隋红1,2
收稿日期:
2023-06-16
修回日期:
2023-09-17
出版日期:
2023-10-25
发布日期:
2023-12-22
通讯作者:
贺常晴,何林
作者简介:
周惠敏(1999—),女,硕士研究生,zhm_1999@tju.edu.cn基金资助:
Huimin ZHOU1,2(), Ying TIAN1,2(), Siyi LIU1, Jiahang ZOU1, Runze ZHANG1, Changqing HE1,2(), Lin HE1,2(), Hong SUI1,2
Received:
2023-06-16
Revised:
2023-09-17
Online:
2023-10-25
Published:
2023-12-22
Contact:
Changqing HE, Lin HE
摘要:
石油中沥青质分子的缔合聚集现象对于石油(尤其是重质油或致密油藏等非常规石油)的开采、储运、加工等具有重要影响,直接决定了原油的体相和界面性质,是矿物或管道器壁表面石油组分吸附沉积、油水(固)乳化、原油高黏等现象的主要成因。系统地综述了沥青质分子间缔合现象及理论发展,从分子间非共价相互作用角度探究了沥青质分子缔合聚集的作用机制,阐述了静电与色散作用主导的非共价相互作用对于沥青质缔合聚集的决定性影响规律。在此基础上,总结了近年来分子模拟等理论计算与界面表征技术在沥青质界面现象研究中的应用现状与发展方向。最后,基于沥青质分子缔合现象与理论,探讨了其在固体表面吸脱附、沉积、分散、破乳技术开发、降黏技术开发等领域的应用与思考。
中图分类号:
周惠敏, 田莹, 刘思亿, 邹佳航, 张润泽, 贺常晴, 何林, 隋红. 沥青质分子缔合作用机制、表征、理论计算与应用研究进展[J]. 化工学报, 2023, 74(10): 3995-4019.
Huimin ZHOU, Ying TIAN, Siyi LIU, Jiahang ZOU, Runze ZHANG, Changqing HE, Lin HE, Hong SUI. Advances in molecular mechanisms, characterization, theoretical calculation and applications on asphaltenes aggregation[J]. CIESC Journal, 2023, 74(10): 3995-4019.
图2 (a) 大陆模型和群岛模型[17-19];(b) 常用的沥青质分子模型[4,23-24]
Fig.2 (a) Continental model and archipelago model[17-19]; (b) Commonly used asphaltene molecular models[4,23-24]
模型名称 | 主要观点 | 重要研究节点 |
---|---|---|
Yen-Mullins层次结构模型 | 沥青质分子缔合包括分子、纳米聚集体、团簇三个层次 | 1961年,Yen等开始探究沥青质缔合体结构[ |
超分子模型 | 沥青质分子缔合体由多种分子间相互作用形成稳定的超分子结构 | 1984年和2001年,Hirschberg等[ |
溶解度模型 | 沥青质聚集体中位于核心的低溶解度组分A1型分子,被高溶解度组分A2型分子和溶剂介质包围 | 2001年,Gutiérrez等[ |
空间胶体模型 | 沥青质吸附胶质分子并分散在油相中,吸附态胶质分子防止沥青质形成更大的聚集体 | 1997年,Barre等[ |
表1 沥青质分子缔合聚集体模型的研究历程和主要观点
Table 1 Research history of asphaltene molecular association aggregation model and main perspectives
模型名称 | 主要观点 | 重要研究节点 |
---|---|---|
Yen-Mullins层次结构模型 | 沥青质分子缔合包括分子、纳米聚集体、团簇三个层次 | 1961年,Yen等开始探究沥青质缔合体结构[ |
超分子模型 | 沥青质分子缔合体由多种分子间相互作用形成稳定的超分子结构 | 1984年和2001年,Hirschberg等[ |
溶解度模型 | 沥青质聚集体中位于核心的低溶解度组分A1型分子,被高溶解度组分A2型分子和溶剂介质包围 | 2001年,Gutiérrez等[ |
空间胶体模型 | 沥青质吸附胶质分子并分散在油相中,吸附态胶质分子防止沥青质形成更大的聚集体 | 1997年,Barre等[ |
图7 (a) 独立梯度模型等值面面积分析图[7];(b) HOMO-LUMO间隙(Δε)分析图[57];(c) 侧链对π-π堆叠强度的影响机制[75];(d) 沥青质与卟啉的聚集方式:钒卟啉(上);镍卟啉(下)[65]
Fig.7 (a) Independent gradient model isosurface area analysis plot[7]; (b) HOMO-LUMO gap (Δε) analysis plot[61]; (c) Mechanism of sidechain on π-π stacking strength[75]; (d) The aggregation of asphaltenes and porphyrins: vanadium porphyrin (top); nickel porphyrin (lower)[65]
测试内容 | 技术手段 | |
---|---|---|
沥青质分子 | 分子量 | 蒸气压渗透法(VPO)[ |
化学结构、构型 | X射线吸收近边缘结构光谱[ | |
分子尺寸 | 紫外-可见吸收光谱法(UV-VIS)[ | |
沥青质聚集体 | 聚集现象 | 光致发光光谱[ |
临界点 | 超声波光谱、界面张力测试、离心[ | |
尺寸/形态 | 离心、纳滤、SEM、TEM、AFM、SAXS和SANS、TRF D、FCS、FD、AFM-SEM、Cryo-SEM等 | |
分子间作用力 | 界面处分子 取向、沥青质在固体表面 吸附能等 | 和频光谱[ |
表2 表征沥青质的性质指标及技术手段
Table 2 Characterization techniques and indicators for asphaltenes
测试内容 | 技术手段 | |
---|---|---|
沥青质分子 | 分子量 | 蒸气压渗透法(VPO)[ |
化学结构、构型 | X射线吸收近边缘结构光谱[ | |
分子尺寸 | 紫外-可见吸收光谱法(UV-VIS)[ | |
沥青质聚集体 | 聚集现象 | 光致发光光谱[ |
临界点 | 超声波光谱、界面张力测试、离心[ | |
尺寸/形态 | 离心、纳滤、SEM、TEM、AFM、SAXS和SANS、TRF D、FCS、FD、AFM-SEM、Cryo-SEM等 | |
分子间作用力 | 界面处分子 取向、沥青质在固体表面 吸附能等 | 和频光谱[ |
图8 (a) AFM用于测量含有不同沥青质浓度的油固界面相互作用力的示意图[195];(b) 沥青质稳定乳液滴的Cryo-SEM图像[6];(c) QCM-D的工作原理示意图[196]
Fig.8 (a) Schematic diagram of the AFM used to measure the interaction force at the oil-solid interface containing different asphaltene concentrations[195]; (b) Cryo-SEM image of droplets of emulsion stabilized by asphaltene: untreated asphaltenes[6]; (c) Working principle of QCM-D[196]
图10 (a) 沥青质聚集体在吸附剂表面通过各自的活性位点的吸附作用示意图[139];(b) C5Pe在固体-水、固体-甲苯体系中的密度曲线及聚集体大小变化图[217];(c) 表面活性剂促进油固分离示意图[12]
Fig.10 (a) Schematic diagram of the adsorption of asphaltene aggregates through their respective active sites on the adsorbent surface[139]; (b) Density profiles of C5Pe in solid-water and solid-toluene systems and changes of aggregate size[217]; (c) Schematic diagram of surfactant promoting oil-solid separation[12]
图11 (a) 沥青质沉积物堵塞管道图[15];(b) 沥青质-酰胺型添加剂的静电势面[221]
Fig.11 (a) Asphaltene deposits clogging pipeline diagram[15]; (b) Analysis diagram of electrostatic potential surface of asphaltene-amide additives[221]
图12 (a) 在油/水界面形成沥青质保护膜的示意图[224];(b) MJTJU-2的结构优势和破乳的界面过程[7]
Fig.12 (a) Schematic diagram of the formation of an asphaltene protective film at the oil/water interface[224]; (b) Structural advantages of MJTJU-2 and the interface process of demulsification[7]
图13 (a) 沥青质、沥青质与FI-2、沥青质与FI-5的SEM图[14];(b) 沥青质与一系列离子流体形成的超分子复合体[233];(c) 加入降黏剂前后重油的表观黏度变化与机理研究示意图[234];(d) 沥青质模拟体系中的氢键结构[235]
Fig.13 (a) SEM images of asphaltene, asphaltene and FI-2, asphaltene and FI-5[14]; (b) Supramolecular complexes formed by asphaltenes with a series of ionized fluid[233]; (c) Apparent viscosity change of heavy oil before and after adding viscosity reducer and schematic diagram of the mechanism[234]; (d) Structures of hydrogen bonds in the simulation system of asphaltene[235]
1 | Benamsili L, Korb J P, Hamon G, et al. Multi-dimensional nuclear magnetic resonance characterizations of dynamics and saturations of brine/crude oil/mud filtrate mixtures confined in rocks: the role of asphaltene[J]. Energy & Fuels, 2014, 28(3): 1629-1640. |
2 | Rashid Z, Wilfred C D, Gnanasundaram N, et al. A comprehensive review on the recent advances on the petroleum asphaltene aggregation[J]. Journal of Petroleum Science and Engineering, 2019, 176: 249-268. |
3 | Adeyanju O A, Oyekunle L O. Experimental study of water-in-oil emulsion flow on wax deposition in subsea pipelines[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106294. |
4 | Kuznicki T, Masliyah J H, Bhattacharjee S. Aggregation and partitioning of model asphaltenes at toluene-water interfaces: molecular dynamics simulations[J]. Energy & Fuels, 2009, 23(10): 5027-5035. |
5 | Gray M R, Tykwinski R R, Stryker J M, et al. Supramolecular assembly model for aggregation of petroleum asphaltenes[J]. Energy & Fuels, 2011, 25(7): 3125-3134. |
6 | Chen Q, Yang H J, Liu H, et al. Spatially resolved micron-scale wrinkle structures at asphaltene films induced by mild thermal treatment and its impact on emulsion stability[J]. Petroleum Science, 2022, 19(6): 3107-3115. |
7 | He C Q, Zhang X C, He L, et al. Revealing the non-covalent interactions between oxygen-containing demulsifiers and interfacially active asphaltenes: a multi-level computational simulation[J]. Fuel, 2022, 329: 125375. |
8 | Jian C Y, Tang T A. Molecular dynamics simulations reveal inhomogeneity-enhanced stacking of violanthrone-78-based polyaromatic compounds in n-heptane-toluene mixtures[J]. The Journal of Physical Chemistry B, 2015, 119(27): 8660-8668. |
9 | Guan D, Feng S, Zhang L Z, et al. Mesoscale simulation for heavy petroleum system using structural unit and dissipative particle dynamics (SU-DPD) frameworks[J]. Energy & Fuels, 2019, 33(2): 1049-1060. |
10 | Ahmadi M, Hassanzadeh H, Abedi J. Asphaltene mesoscale aggregation behavior in organic solvents—a Brownian dynamics study[J]. The Journal of Physical Chemistry B, 2018, 122(35): 8477-8492. |
11 | Theodorou D N. Progress and outlook in Monte Carlo simulations[J]. Industrial & Engineering Chemistry Research, 2010, 49(7): 3047-3058. |
12 | Liu Q A, Yuan S L, Yan H, et al. Mechanism of oil detachment from a silica surface in aqueous surfactant solutions: molecular dynamics simulations[J]. The Journal of Physical Chemistry B, 2012, 116(9): 2867-2875. |
13 | Gorbacheva S N, Ilyin S O. Structure, rheology and possible application of water-in-oil emulsions stabilized by asphaltenes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618: 126442. |
14 | Quan H P, Xing L M. The effect of hydrogen bonds between flow improvers with asphaltene for heavy crude oil[J]. Fuel, 2019, 237: 276-282. |
15 | Mullins O C. Review of the molecular structure and aggregation of asphaltenes and petroleomics[J]. SPE Journal, 2008, 13(1): 48-57. |
16 | Ge W, Chen F G, Gao J, et al. Analytical multi-scale method for multi-phase complex systems in process engineering—bridging reductionism and holism[J]. Chemical Engineering Science, 2007, 62(13): 3346-3377. |
17 | Chacón-Patiño M L, Rowland S M, Rodgers R P. Advances in asphaltene petroleomics(Part 3): Dominance of island or archipelago structural motif is sample dependent[J]. Energy & Fuels, 2018, 32(9): 9106-9120. |
18 | Law J C, Headen T F, Jiménez-Serratos G, et al. Catalogue of plausible molecular models for the molecular dynamics of asphaltenes and resins obtained from quantitative molecular representation[J]. Energy & Fuels, 2019, 33(10): 9779-9795. |
19 | Yang F, Tchoukov P, Dettman H, et al. Asphaltene subfractions responsible for stabilizing water-in-crude oil emulsions(Part 2): Molecular representations and molecular dynamics simulations[J]. Energy & Fuels, 2015, 29(8): 4783-4794. |
20 | Mullins O C, Zhu Y F. First observation of the urbach tail in a multicomponent organic system[J]. Applied Spectroscopy, 1992, 46(2): 354-356. |
21 | Ralston C Y, Mitra-Kirtley S, Mullins O C. Small population of one to three fused-aromatic ring moieties in asphaltenes[J]. Energy & Fuels, 1996, 10(3): 623-630. |
22 | Schneider M H, Andrews A B, Mitra-Kirtley S, et al. Asphaltene molecular size by fluorescence correlation spectroscopy[J]. Energy & Fuels, 2007, 21(5): 2875-2882. |
23 | Bai Y, Sui H, Liu X Y, et al. Effects of the N, O, and S heteroatoms on the adsorption and desorption of asphaltenes on silica surface: a molecular dynamics simulation[J]. Fuel, 2019, 240: 252-261. |
24 | Niu Z, Ma X M, Manica R, et al. Molecular destabilization mechanism of asphaltene model compound C5Pe interfacial film by EO-PO copolymer: experiments and MD simulation[J]. The Journal of Physical Chemistry C, 2019, 123(16): 10501-10508. |
25 | Verstraete J J, Schnongs P, Dulot H, et al. Molecular reconstruction of heavy petroleum residue fractions[J]. Chemical Engineering Science, 2010, 65(1): 304-312. |
26 | Deniz C U, Yasar M, Klein M T. A new extended structural parameter set for stochastic molecular reconstruction: application to asphaltenes[J]. Energy & Fuels, 2017, 31(8): 7919-7931. |
27 | Ren Y, Liao Z W, Sun J Y, et al. Molecular reconstruction: recent progress toward composition modeling of petroleum fractions[J]. Chemical Engineering Journal, 2019, 357: 761-775. |
28 | Schuler B, Meyer G, Peña D, et al. Unraveling the molecular structures of asphaltenes by atomic force microscopy[J]. Journal of the American Chemical Society, 2015, 137(31): 9870-9876. |
29 | Neurock M, Libanati C, Nigam A, et al. Monte Carlo simulation of complex reaction systems: molecular structure and reactivity in modelling heavy oils[J]. Chemical Engineering Science, 1990, 45(8): 2083-2088. |
30 | Neurock M, Nigam A, Trauth D, et al. Molecular representation of complex hydrocarbon feedstocks through efficient characterization and stochastic algorithms[J]. Chemical Engineering Science, 1994, 49(24): 4153-4177. |
31 | Sheremata J M, Gray M R, Dettman H D, et al. Quantitative molecular representation and sequential optimization of athabasca asphaltenes[J]. Energy & Fuels, 2004, 18(5): 1377-1384. |
32 | Boek E S, Yakovlev D S, Headen T F. Quantitative molecular representation of asphaltenes and molecular dynamics simulation of their aggregation[J]. Energy & Fuels, 2009, 23(3): 1209-1219. |
33 | Mei H A, Wang Z L, Huang B A. Molecular-based Bayesian regression model of petroleum fractions[J]. Industrial & Engineering Chemistry Research, 2017, 56(50): 14865-14872. |
34 | Alvarez-Majmutov A, Chen J W, Gieleciak R. Molecular-level modeling and simulation of vacuum gas oil hydrocracking[J]. Energy & Fuels, 2016, 30(1): 138-148. |
35 | Yen T F, Erdman J G, Pollack S S. Investigation of the structure of petroleum asphaltenes by X-ray diffraction[J]. Analytical Chemistry, 1961, 33(11): 1587-1594. |
36 | Dickie J P, Yen T F. Macrostructures of the asphaltic fractions by various instrumental methods[J]. Analytical Chemistry, 1967, 39(14): 1847-1852. |
37 | Mullins O C. The modified Yen model[J]. Energy & Fuels, 2010, 24(4): 2179-2207. |
38 | Mullins O C. The asphaltenes[J]. Annual Review of Analytical Chemistry, 2011, 4: 393-418. |
39 | Hirschberg A, Hermans L. Asphaltene phase behaviour: a molecular thermodynamic model[C]//Characterization of Heavy Crude Oils and Petroleum Residues. Paris, France: Editions Technip, 1984: 492-497. |
40 | Agrawala M, Yarranton H W. An asphaltene association model analogous to linear polymerization[J]. Industrial & Engineering Chemistry Research, 2001, 40(21): 4664-4672. |
41 | Gutiérrez L B, Ranaudo M A, Méndez B, et al. Fractionation of asphaltene by complex formation with p-nitrophenol. A method for structural studies and stability of asphaltene colloids[J]. Energy & Fuels, 2001, 15(3): 624-628. |
42 | Acevedo S, Zuloaga C, Rodríguez P. Aggregation-dissociation studies of asphaltene solutions in resins performed using the combined freeze fracture-transmission electron microscopy technique[J]. Energy & Fuels, 2008, 22(4): 2332-2340. |
43 | Barre L, Espinat D, Rosenberg E, et al. Colloidal structure of heavy crudes and asphaltene soltutions[J]. Revue De L'Institut Français Du Pétrole, 1997, 52(2): 161-175. |
44 | Murgich J, Strausz O P. Molecular mechanics of aggregates of asphaltenes and resins of the Athabasca oil[J]. Petroleum Science and Technology, 2001, 19(1/2): 231-243. |
45 | Groenzin H, Mullins O C. Asphaltene molecular size and structure[J]. The Journal of Physical Chemistry A, 1999, 103(50): 11237-11245. |
46 | Pomerantz A E, Wu Q H, Mullins O C, et al. Laser-based mass spectrometric assessment of asphaltene molecular weight, molecular architecture, and nanoaggregate number[J]. Energy & Fuels, 2015, 29(5): 2833-2842. |
47 | Mullins O C, Sabbah H, Eyssautier J, et al. Advances in asphaltene science and the Yen-Mullins model[J]. Energy & Fuels, 2012, 26(7): 3986-4003. |
48 | Lemarchand C A, Schrøder T B, Dyre J C, et al. Cooee bitumen: chemical aging[J]. The Journal of Chemical Physics, 2013, 139(12): 124506. |
49 | Lemarchand C A, Hansen J S. Simple statistical model for branched aggregates: application to Cooee bitumen[J]. The Journal of Physical Chemistry B, 2015, 119(44): 14323-14331. |
50 | Wang J A, Ferguson A L. Mesoscale simulation of asphaltene aggregation[J]. The Journal of Physical Chemistry B, 2016, 120(32): 8016-8035. |
51 | Tang J, Wang H. Coarse grained modeling of nanostructure and asphaltene aggregation in asphalt binder using dissipative particle dynamics[J]. Construction and Building Materials, 2022, 314: 125605. |
52 | Bao C H, Zheng C F, Xu Y, et al. Microscopic analysis of the evolution of asphalt colloidal properties and rejuvenation behavior in aged asphalt[J]. Journal of Cleaner Production, 2022, 339: 130761. |
53 | Long J, Xu Z H, Masliyah J H. Single molecule force spectroscopy of asphaltene aggregates[J]. Langmuir, 2007, 23(11): 6182-6190. |
54 | 边颖慧, 董徐静, 朱丽君, 等. 石油组分及其模型化合物的超分子化学作用[J]. 化学进展, 2013, 25(8): 1260-1271. |
Bian Y H, Dong X J, Zhu L J, et al. Supramolecular interaction of petroleum components and model compounds[J]. Progress in Chemistry, 2013, 25(8): 1260-1271. | |
55 | Silva H S, Alfarra A, Vallverdu G, et al. Impact of H-bonds and porphyrins on asphaltene aggregation as revealed by molecular dynamics simulations[J]. Energy & Fuels, 2018, 32(11): 11153-11164. |
56 | Wang J A, Gayatri M, Ferguson A L. Coarse-grained molecular simulation and nonlinear manifold learning of archipelago asphaltene aggregation and folding[J]. The Journal of Physical Chemistry B, 2018, 122(25): 6627-6647. |
57 | Wang H J, Xu H Y, Jia W H, et al. Revealing the intermolecular interactions of asphaltene dimers by quantum chemical calculations[J]. Energy & Fuels, 2017, 31(3): 2488-2495. |
58 | 李英峰, 卢贵武, 孙为, 等. 石油沥青质缔合体的分子动力学研究[J]. 石油学报(石油加工), 2007, 23(4): 25-31. |
Li Y F, Lu G W, Sun W, et al. Study on the molecular dynamics of petroleum-derived asphaltene aggregate[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2007, 23(4): 25-31. | |
59 | Rogel E. Simulation of interactions in asphaltene aggregates[J]. Energy & Fuels, 2000, 14(3): 566-574. |
60 | 刘必心, 龙军, 任强, 等. 塔河沥青质超分子体系的初步探索[J]. 石油学报(石油加工), 2017, 33(1): 16-24. |
Liu B X, Long J, Ren Q, et al. Preliminary exploration for supramolecular system of Tahe asphaltene[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(1): 16-24. | |
61 | Bian H, Kan A T, Yao Z L, et al. Impact of functional group methylation on the disaggregation trend of asphaltene: a combined experimental and theoretical study[J]. The Journal of Physical Chemistry C, 2019, 123(49): 29543-29555. |
62 | Liu D, Kong X E, Li M Y, et al. Study on the aggregation of residue-derived asphaltene molecules[J]. Energy & Fuels, 2010, 24(6): 3624-3627. |
63 | Khalaf M H, Ali Mansoori G. A new insight into asphaltenes aggregation onset at molecular level in crude oil (an MD simulation study)[J]. Journal of Petroleum Science and Engineering, 2018, 162: 244-250. |
64 | Ekramipooya A, Valadi F M, Farisabadi A, et al. Effect of the heteroatom presence in different positions of the model asphaltene structure on the self-aggregation: MD and DFT study[J]. Journal of Molecular Liquids, 2021, 334: 116109. |
65 | 蔡新恒, 龙军, 任强, 等. 沥青质分子聚集体的聚集内因[J]. 石油学报(石油加工), 2019, 35(5): 920-928. |
Cai X H, Long J, Ren Q, et al. Aggregation mechanism of asphaltene molecular aggregates[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(5): 920-928. | |
66 | Cavallo G, Metrangolo P, Milani R, et al. The halogen bond[J]. Chemical Reviews, 2016, 116(4): 2478-2601. |
67 | Wang H, Wang W Z, Jin W J. σ-hole bond vs π-hole bond: a comparison based on halogen bond[J]. Chemical Reviews, 2016, 116(9): 5072-5104. |
68 | Politzer P, Murray J S. σ-holes and π-holes: similarities and differences[J]. Journal of Computational Chemistry, 2018, 39(9): 464-471. |
69 | 王鹏, 黄世军, 赵凤兰, 等. 沥青质微观聚集特征的分子动力学研究[J]. 油气地质与采收率, 2021, 28(4): 77-85. |
Wang P, Huang S J, Zhao F L, et al. Molecular dynamics study of microcosmic aggregation of asphaltenes[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(4): 77-85. | |
70 | 任强, 龙军, 代振宇, 等. 沥青质分子聚集体中π-π相互作用的研究[J]. 石油学报(石油加工), 2019, 35(4): 751-758. |
Ren Q, Long J, Dai Z Y, et al. Theoretical study on π-π interactions in asphaltene molecular aggregates[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(4): 751-758. | |
71 | Lu T A, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. |
72 | Gonthier J F, Steinmann S N, Roch L, et al. π-depletion as a criterion to predict π-stacking ability[J]. Chemical Communications, 2012, 48(74): 9239-9241. |
73 | Santos Silva H, Alfarra A, Vallverdu G, et al. Sensitivity of asphaltene aggregation toward the molecular architecture under desalting thermodynamic conditions[J]. Energy & Fuels, 2018, 32(3): 2681-2692. |
74 | Pacheco-Sánchez J H, Álvarez-Ramírez F, Martínez-Magadán J M. Morphology of aggregated asphaltene structural models[J]. Energy & Fuels, 2004, 18(6): 1676-1686. |
75 | Bian H, Xu F, Kan A T, et al. Insight into the mechanism of asphaltene disaggregation by alkylated treatment: an experimental and theoretical investigation[J]. Journal of Molecular Liquids, 2021, 343: 117576. |
76 | Jian C Y, Tang T A, Bhattacharjee S. Probing the effect of side-chain length on the aggregation of a model asphaltene using molecular dynamics simulations[J]. Energy & Fuels, 2013, 27(4): 2057-2067. |
77 | 丁雪春. 卟啉、金属卟啉的聚集及对沥青质缔合的影响研究[D]. 青岛: 中国石油大学(华东), 2020. |
Ding X C. Aggregation of porphyrin and metalloporphyrin and effect on asphaltene association[D]. Qingdao: China University of Petroleum, 2020. | |
78 | Espinat D, Fenistein D, Barré L, et al. Effects of temperature and pressure on asphaltenes agglomeration in toluene. A light, X-ray, and neutron scattering investigation[J]. Energy & Fuels, 2004, 18(5): 1243-1249. |
79 | Zhang S, Zhang L, Lu X, et al. Adsorption kinetics of asphaltenes at oil/water interface: effects of concentration and temperature[J]. Fuel, 2018, 212: 387-394. |
80 | Mansur C R E, de Melo A R, Lucas E F. Determination of asphaltene particle size: influence of flocculant, additive, and temperature[J]. Energy & Fuels, 2012, 26(8): 4988-4994. |
81 | Mohammadi S, Rashidi F, Ali Mousavi-Dehghani S, et al. Modeling of asphaltene aggregation phenomena in live oil systems at high pressure-high temperature[J]. Fluid Phase Equilibria, 2016, 423: 55-73. |
82 | Eftekhari A, Amin J S, Zendehboudi S. A molecular dynamics approach to investigate effect of pressure on asphaltene self-aggregation[J]. Journal of Molecular Liquids, 2023, 376: 121347. |
83 | Kondori J, Tazikeh S, Sayyad Amin J, et al. Quantum mechanics and molecular dynamics strategies to investigate self-aggregation of Quinolin-65[J]. Journal of Molecular Liquids, 2022, 368: 120552. |
84 | Yang Y L, Song J J, Sui H, et al. Understanding the behaviors of toluene in asphaltenes[J]. Journal of Molecular Liquids, 2022, 348: 118016. |
85 | Wang S Q, Liu J J, Zhang L Y, et al. Interaction forces between asphaltene surfaces in organic solvents[J]. Langmuir, 2010, 26(1): 183-190. |
86 | Fan X Y, Jiao Y P, Shang H, et al. Effect of microwave electric field on asphaltene aggregation in a heavy oil system: MD and DFT investigation[J]. Journal of Molecular Liquids, 2023, 372: 121212. |
87 | Amjad-Iranagh S, Rahmati M, Haghi M, et al. Asphaltene solubility in common solvents: a molecular dynamics simulation study[J]. The Canadian Journal of Chemical Engineering, 2015, 93(12): 2222-2232. |
88 | Ballard D A, Qiao P, Cattoz B, et al. Aggregation behavior of E-SARA asphaltene fractions studied by small-angle neutron scattering[J]. Energy & Fuels, 2020, 34(6): 6894-6903. |
89 | Sun Z H, Wu Y, Xu W X, et al. Study on the aggregation behaviors of asphaltene derived from low temperature coal tar in organic solvents by absorbance and fluorescence spectroscopy[J]. Solid Fuel Chemistry, 2021, 55(S1): S11-S21. |
90 | Paridar S, Solaimany Nazar A R, Karimi Y. Experimental evaluation of asphaltene dispersants performance using dynamic light scattering[J]. Journal of Petroleum Science and Engineering, 2018, 163: 570-575. |
91 | Yaseen S, Ali Mansoori G. Molecular dynamics studies of interaction between asphaltenes and solvents[J]. Journal of Petroleum Science and Engineering, 2017, 156: 118-124. |
92 | Jiang B, Zhang R Y, Yang N, et al. Asphaltene aggregation and assembly behaviors in organic solvents with water and inhibitor[J]. Energy & Fuels, 2019, 33(3): 1955-1968. |
93 | Vatti A K, Caratsch A, Sarkar S, et al. Asphaltene aggregation in aqueous solution using different water models: a classical molecular dynamics study[J]. ACS Omega, 2020, 5(27): 16530-16536. |
94 | Khalaf M H, Ali Mansoori G, Yong C W. Magnetic treatment of petroleum and its relation with asphaltene aggregation onset (an atomistic investigation)[J]. Journal of Petroleum Science and Engineering, 2019, 176: 926-933. |
95 | Xu G J, Wang H. Molecular dynamics study of oxidative aging effect on asphalt binder properties[J]. Fuel, 2017, 188: 1-10. |
96 | Xiao M M, Fan L. Ultraviolet aging mechanism of asphalt molecular based on microscopic simulation[J]. Construction and Building Materials, 2022, 319: 126157. |
97 | Soleymanzadeh A, Yousefi M, Kord S, et al. A review on methods of determining onset of asphaltene precipitation[J]. Journal of Petroleum Exploration and Production Technology, 2019, 9(2): 1375-1396. |
98 | Ratovskaya A A. Determination of the molecular weight of asphaltenes by the thermoelectric technique[J]. Chemistry and Technology of Fuels and Oils, 1968, 4(10): 773-776. |
99 | Ali L H, Al-Ghannam K A. Investigations into asphaltenes in heavy crude oils(Ⅰ): Effect of temperature on precipitation by alkane solvents[J]. Fuel, 1981, 60(11): 1043-1046. |
100 | Acevedo S, Gutierrez L B, Negrin G, et al. Molecular weight of petroleum asphaltenes: a comparison between mass spectrometry and vapor pressure osmometry[J]. Energy & Fuels, 2005, 19(4): 1548-1560. |
101 | Barrera D M, Ortiz D P, Yarranton H W. Molecular weight and density distributions of asphaltenes from crude oils[J]. Energy & Fuels, 2013, 27(5): 2474-2487. |
102 | Tanaka R, Sato E, Hunt J E, et al. Characterization of asphaltene aggregates using X-ray diffraction and small-angle X-ray scattering[J]. Energy & Fuels, 2004, 18(4): 1118-1125. |
103 | Yang T, Deng W A, Zhu Y H, et al. The influences of compositional and structural evolutions of asphaltenes on coking behavior during slurry-bed hydrocracking[J]. Fuel, 2022, 325: 124839. |
104 | Molnárné Guricza L, Schrader W. New separation approach for asphaltene investigation: argentation chromatography coupled with ultrahigh-resolution mass spectrometry[J]. Energy & Fuels, 2015, 29(10): 6224-6230. |
105 | Rogel E, Moir M. Effect of precipitation time and solvent power on asphaltene characteristics[J]. Fuel, 2017, 208: 271-280. |
106 | Montanari L, Bonoldi L, Alessi A, et al. Molecular evolution of asphaltenes from petroleum residues after different severity hydroconversion by EST process[J]. Energy & Fuels, 2017, 31(4): 3729-3737. |
107 | da Silva Oliveira E C, Neto Á C, Júnior V L, et al. Study of Brazilian asphaltene aggregation by nuclear magnetic resonance spectroscopy[J]. Fuel, 2014, 117: 146-151. |
108 | Forsythe J, Pomerantz A, Seifert D J, et al. A geological model for the origin of fluid compositional gradients in a large Saudi Arabian oilfield: an investigation by two-dimensional gas chromatography (GC × GC) and asphaltene chemistry[J]. Energy & Fuels, 2015, 29: 5666-5680. |
109 | Groenzin H, Mullins O C. Asphaltene molecular size and weight by time-resolved fluorescence depolarization[M]//Asphaltenes, Heavy Oils, and Petroleomics. New York, NY: Springer New York, 2007: 17-62. |
110 | Zuo P P, Qu S J, Shen W Z. Asphaltenes: separations, structural analysis and applications[J]. Journal of Energy Chemistry, 2019, 34: 186-207. |
111 | Cardozo S D, Schulze M, Tykwinski R R, et al. Addition reactions of olefins to asphaltene model compounds[J]. Energy & Fuels, 2015, 29(3): 1494-1502. |
112 | Fonseca V R, Folli G S, Souza L M, et al. Optimisation of LDI(+)-FT-ICR MS analysis of asphaltenes to prevent the formation of fullerenes[J]. Fuel, 2023, 347: 128451. |
113 | Zhu Y H, Du C P, Zheng H A, et al. Molecular representation of coal-derived asphaltene based on high resolution mass spectrometry[J]. Arabian Journal of Chemistry, 2022, 15(1): 103531. |
114 | Pinto F E, Fonseca V R, Souza L M, et al. Asphaltenes subfractions characterization and calculation of their solubility parameter using ESI (-) FT-ICR MS(Part Ⅱ)[J]. Fuel, 2022, 312: 122864. |
115 | Tian Y K, Jiang B, Chen J, et al. Characterisation by ESI FT-ICR MS of heteroatomic compounds in catalytic hydropyrolysates released from marine crude oil asphaltenes[J]. Organic Geochemistry, 2022, 167: 104391. |
116 | Koolen H H F, Gomes A F, de Moura L G M, et al. Integrative mass spectrometry strategy for fingerprinting and tentative structural characterization of asphaltenes[J]. Fuel, 2018, 220: 717-724. |
117 | Pereira T M C, Vanini G, Oliveira E C S, et al. An evaluation of the aromaticity of asphaltenes using atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry - APPI(±)FT-ICR MS[J]. Fuel, 2014, 118: 348-357. |
118 | Blaudeau L, Kenttämaa H I. Tandem mass spectrometric characterization of the molecular radical cations of asphaltenes[J]. Energy & Fuels, 2022, 36(16): 8684-8691. |
119 | Pereira T M C, Vanini G, Tose L V, et al. FT-ICR MS analysis of asphaltenes: asphaltenes go in, fullerenes come out[J]. Fuel, 2014, 131: 49-58. |
120 | Pinkston D S, Duan P G, Gallardo V A, et al. Analysis of asphaltenes and asphaltene model compounds by laser-induced acoustic desorption/Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy & Fuels, 2009, 23(11): 5564-5570. |
121 | Borton D J, Pinkston D S, Hurt M R, et al. Molecular structures of asphaltenes based on the dissociation reactions of their ions in mass spectrometry[J]. Energy & Fuels, 2010, 24(10): 5548-5559. |
122 | Acevedo S, Cordero T J M, Carrier H, et al. Trapping of paraffin and other compounds by asphaltenes detected by laser desorption ionization-time of flight mass spectrometry (LDI-TOF MS): role of A1 and A2 asphaltene fractions in this trapping[J]. Energy & Fuels, 2009, 23(2): 842-848. |
123 | Zhu Y H, Guo Y T, Teng H P, et al. Analysis of oxygen-containing species in coal tar by comprehensive two-dimensional GC × GC-TOF and ESI FT-ICR mass spectrometry through a new subfraction separation method[J]. Journal of the Energy Institute, 2022, 101: 209-220. |
124 | Zuo P P, Shen W Z. Identification of nitrogen-polyaromatic compounds in asphaltene from co-processing of coal and petroleum residue using chromatography with mass spectrometry[J]. International Journal of Coal Science & Technology, 2017, 4(3): 281-299. |
125 | Barbier J, Lienemann C P, Le Masle A, et al. New insights into resid desulfurization processes: molecular size dependence of catalytic performances quantified by size exclusion chromatography-ICP/MS[J]. Energy & Fuels, 2013, 27(11): 6567-6574. |
126 | Acevedo N, Moulian R M, Chacón-Patiño M L, et al. Understanding asphaltene fraction behavior through combined quartz crystal resonator sensor, FT-ICR MS, GPC ICP HR-MS, and AFM characterization(Part Ⅰ): Extrography fractionations[J]. Energy & Fuels, 2020, 34(11): 13903-13915. |
127 | Badre S, Carla Goncalves C, Norinaga K, et al. Molecular size and weight of asphaltene and asphaltene solubility fractions from coals, crude oils and bitumen[J]. Fuel, 2006, 85(1): 1-11. |
128 | da Silva Souza R, Nicodem D E, Garden S J, et al. Study of the asphaltene aggregation structure by time-resolved fluorescence spectroscopy[J]. Energy & Fuels, 2010, 24(2): 1135-1138. |
129 | Bruno A, Alfè M, Apicella B, et al. Characterization of nanometric carbon materials by time-resolved fluorescence polarization anisotropy[J]. Optics and Lasers in Engineering, 2006, 44(7): 732-746. |
130 | Buch L, Groenzin H, Buenrostro-Gonzalez E, et al. Molecular size of asphaltene fractions obtained from residuum hydrotreatment [J]. Fuel, 2003, 82(9): 1075-1084. |
131 | Guerra R E, Ladavac K, Andrews A B, et al. Diffusivity of coal and petroleum asphaltene monomers by fluorescence correlation spectroscopy[J]. Fuel, 2007, 86(12/13): 2016-2020. |
132 | Akimov A S, Sviridenko N N. Transformation of asphaltenes of vacuum residues in thermal and thermocatalytic processes[J]. Petroleum Science and Technology, 2022, 40(8): 980-994. |
133 | Trejo F, Ancheyta J, Rana M S. Structural characterization of asphaltenes obtained from hydroprocessed crude oils by SEM and TEM[J]. Energy & Fuels, 2009, 23(1): 429-439. |
134 | AlHumaidan F S, Rana M S, Tanoli N J, et al. Changes in asphaltene surface topography with thermal treatment[J]. Arabian Journal of Chemistry, 2020, 13(5): 5377-5389. |
135 | Guo M, Tan Y Q, Yu J X, et al. A direct characterization of interfacial interaction between asphalt binder and mineral fillers by atomic force microscopy[J]. Materials and Structures, 2017, 50(2): 141. |
136 | da Silveira Balestrin L B, Cardoso M B, Loh W. Using atomic force microscopy to detect asphaltene colloidal particles in crude oils[J]. Energy & Fuels, 2017, 31(4): 3738-3746. |
137 | Shi C, Zhang L, Xie L, et al. Interaction mechanism of oil-in-water emulsions with asphaltenes determined using droplet probe AFM[J]. Langmuir, 2016, 32(10): 2302-2310. |
138 | Balabin R M, Syunyaev R Z, Schmid T, et al. Asphaltene adsorption onto an iron surface: combined near-infrared (NIR), Raman, and AFM study of the kinetics, thermodynamics, and layer structure[J]. Energy & Fuels, 2011, 25(1): 189-196. |
139 | Adams J J. Asphaltene adsorption, a literature review[J]. Energy & Fuels, 2014, 28(5): 2831-2856. |
140 | Trukhan S N, Kazarian S G, Martyanov O N. Electron spin resonance of slowly rotating vanadyls-effective tool to quantify the sizes of asphaltenes in situ [J]. Energy & Fuels, 2017, 31(1): 387-394. |
141 | Eyssautier J, Levitz P, Espinat D, et al. Insight into asphaltene nanoaggregate structure inferred by small angle neutron and X-ray scattering[J]. The Journal of Physical Chemistry B, 2011, 115(21): 6827-6837. |
142 | Andreatta G, Goncalves C C, Buffin G, et al. Nanoaggregates and structure-function relations in asphaltenes[J]. Energy & Fuels, 2005, 19(4): 1282-1289. |
143 | Javanbakht G, Sedghi M, Welch W R W, et al. Molecular polydispersity improves prediction of asphaltene aggregation[J]. Journal of Molecular Liquids, 2018, 256: 382-394. |
144 | Zhao M Y, Shen F, Ding Q J. Micromechanism of the dispersion behavior of polymer-modified rejuvenators in aged asphalt material[J]. Applied Sciences, 2018, 8(9): 1591. |
145 | Zúñiga-Hinojosa M A, Cosultchi A, Martinez-Martinez M T, et al. Behavior comparison of films of Mexican bitumen and its asphaltene and maltenes fractions at interfaces[J]. Fuel, 2022, 307: 121852. |
146 | Dai X D, Yu S L, Yao Y A, et al. N, O, and S functional groups in residue asphaltene before and after hydrotreating via X-ray technology[J]. Petroleum Science and Technology, 2017, 35(10): 988-992. |
147 | Bava Y B, Geronés M, Giovanetti L J, et al. Speciation of sulphur in asphaltenes and resins from Argentinian petroleum by using XANES spectroscopy[J]. Fuel, 2019, 256: 115952. |
148 | Wargadalam V J, Norinaga K, Iino M. Size and shape of a coal asphaltene studied by viscosity and diffusion coefficient measurements[J]. Fuel, 2002, 81(11/12): 1403-1407. |
149 | Gafurov M, Mamin G, Ganeeva Y, et al. Multifrequency (9 and 95 GHz) EPR study of stable radicals in asphaltenes fractions of oils and bitumen[J]. IOP Conference Series: Earth and Environmental Science, 2019, 282(1): 012016. |
150 | de Abreu C R, Cordeiro T C, Carrasquilla A A G, et al. Electron spin resonance (ESR) in petrophysical characterization of pure carbonatic rocks and containing oil[J]. Journal of Petroleum Science and Engineering, 2021, 203: 108847. |
151 | Marcano F, Moura L G M, Cardoso F M R, et al. Evaluation of the chemical additive effect on asphaltene aggregation in dead oils: a comparative study between ultraviolet-visible and near-infrared-laser light scattering techniques[J]. Energy & Fuels, 2015, 29(5): 2813-2822. |
152 | Auflem I, Havre T, Sjöblom J. Near-IR study on the dispersive effects of amphiphiles and naphthenic acids on asphaltenes in model heptane-toluene mixtures[J]. Colloid and Polymer Science, 2002, 280(8): 695-700. |
153 | Ali M F, Siddiqui M N, Al-Hajji A A. Structural studies on residual fuel oil asphaltenes by RICO method[J]. Petroleum Science and Technology, 2004, 22(5/6): 631-645. |
154 | Artok L, Su Y, Hirose Y, et al. Structure and reactivity of petroleum-derived asphaltene[J]. Energy & Fuels, 1999, 13(2): 287-296. |
155 | Albuquerque F C, Nicodem D E, Rajagopal K. Investigation of asphaltene association by front-face fluorescence spectroscopy[J]. Applied Spectroscopy, 2003, 57(7): 805-810. |
156 | AlHumaidan F S, Hauser A, Rana M S, et al. Changes in asphaltene structure during thermal cracking of residual oils: XRD study[J]. Fuel, 2015, 150: 558-564. |
157 | Madeira N C L, Rainha K P, Mendonça J, et al. Study of the influence of resins on the asphaltene aggregates by 1H DOSY NMR[J]. Energy & Fuels, 2020, 34(5): 5679-5688. |
158 | Ok S, Fernandes M, Sabti M A. Investigations on asphaltene aggregate formation by high-field diffusion NMR and low-field ghost solvent NMR relaxometry[J]. Journal of Dispersion Science and Technology, 2022: 1-11. |
159 | Baghersaei S, Mokhtari B, Pourreza N, et al. Tetraalkylammonium and phosphonium salt for asphaltene dispersion; experimental studies on interaction mechanisms[J]. Egyptian Journal of Petroleum, 2022, 31(3): 77-81. |
160 | Taherian Z, Saeedi Dehaghani A, Ayatollahi S, et al. The mechanistic investigation on the effect of the crude oil/brine interaction on the interface properties: a study on asphaltene structure[J]. Journal of Molecular Liquids, 2022, 360: 119495. |
161 | Evdokimov I N, Fesan A A, Losev A P. Occlusion of foreign molecules in primary asphaltene aggregates from near-UV-visible absorption studies[J]. Energy & Fuels, 2017, 31(2): 1370-1375. |
162 | Hosseini-Dastgerdi Z, Tabatabaei-Nejad S A R, Khodapanah E, et al. A comprehensive study on mechanism of formation and techniques to diagnose asphaltene structure; molecular and aggregates: a review[J]. Asia-Pacific Journal of Chemical Engineering, 2015, 10(1): 1-14. |
163 | Andreatta G, Bostrom N, Mullins O C. Ultrasonic spectroscopy of asphaltene aggregation[M]//Mullins O C, Sheu E Y, Hammami A, et al. Asphaltenes, Heavy Oils, and Petroleomics. New York, NY: Springer New York, 2007: 231-257. |
164 | Kang N, Hua I, Xiao C H. Impacts of sonochemical process variables on number average molecular weight reduction of asphaltene[J]. Industrial & Engineering Chemistry Research, 2006, 45(15): 5239-5245. |
165 | Lashkarbolooki M, Ayatollahi S. Effects of asphaltene, resin and crude oil type on the interfacial tension of crude oil/brine solution[J]. Fuel, 2018, 223: 261-267. |
166 | Alicke A, Simon S, Sjöblom J, et al. Assessing the interfacial activity of insoluble asphaltene layers: interfacial rheology versus interfacial tension[J]. Langmuir, 2020, 36(49): 14942-14959. |
167 | Li X X, Chi P C, Guo X Q, et al. Effects of asphaltene concentration and asphaltene agglomeration on viscosity[J]. Fuel, 2019, 255: 115825. |
168 | Pal R. A new model for the viscosity of asphaltene solutions[J]. The Canadian Journal of Chemical Engineering, 2015, 93(4): 747-755. |
169 | Shahsavani B, Riazi M, Malayeri M R. Asphaltene instability in the presence of emulsified aqueous phase[J]. Fuel, 2021, 305: 121528. |
170 | Velikov A A. Estimation of the enthalpy of asphaltene aggregation[J]. AIP Conference Proceedings, 2022, 2509(1): 020201. |
171 | Guo K, Lv Y L, He L M, et al. Experimental study on the dehydration performance of synergistic effect of electric field and magnetic field[J]. Chemical Engineering and Processing - Process Intensification, 2019, 142: 107555. |
172 | Goual L, Sedghi M, Mostowfi F, et al. Cluster of asphaltene nanoaggregates by DC conductivity and centrifugation[J]. Energy & Fuels, 2014, 28(8): 5002-5013. |
173 | Li C A, Yang T F, Deng W A, et al. Effects of iron(Ⅲ) dodecylbenzenesulfonate on the slurry-phase hydrocracking of Venezuela fuel oil with an oil-soluble Mo catalyst[J]. Energy & Fuels, 2016, 30(6): 4710-4716. |
174 | Judhan S. An evaluation of sand control performance within a field in the trinmar acreage[C]//SPE Trinidad and Tobago Section Energy Resources Conference. 2016. |
175 | Riedeman J S, Kadasala N R, Wei A, et al. Characterization of asphaltene deposits by using mass spectrometry and Raman spectroscopy[J]. Energy & Fuels, 2016, 30(2): 805-809. |
176 | Andrews A B, Wang D X, Marzec K M, et al. Surface enhanced Raman spectroscopy of polycyclic aromatic hydrocarbons and molecular asphaltenes[J]. Chemical Physics Letters, 2015, 620: 139-143. |
177 | Sviridenko N N, Akimov A S. Characteristics of products of thermal and catalytic cracking of heavy oil asphaltenes under supercritical water conditions[J]. The Journal of Supercritical Fluids, 2023, 192: 105784. |
178 | Salehzadeh M, Husein M M, Ghotbi C, et al. In-depth characterization of light, medium and heavy oil asphaltenes as well as asphaltenes subfractions[J]. Fuel, 2022, 324: 124525. |
179 | Mostowfi F, Indo K, Mullins O C, et al. Asphaltene nanoaggregates studied by centrifugation[J]. Energy & Fuels, 2009, 23(3): 1194-1200. |
180 | Indo K, Ratulowski J, Dindoruk B, et al. Asphaltene nanoaggregates measured in a live crude oil by centrifugation[J]. Energy & Fuels, 2009, 23(9): 4460-4469. |
181 | Yarranton H W, Ortiz D P, Barrera D M, et al. On the size distribution of self-associated asphaltenes[J]. Energy & Fuels, 2013, 27(9): 5083-5106. |
182 | Ching M J T M, Pomerantz A E, Andrews A B, et al. On the nanofiltration of asphaltene solutions, crude oils, and emulsions[J]. Energy & Fuels, 2010, 24(9): 5028-5037. |
183 | Ruiz-Morales Y, Mullins O C. Coarse-grained molecular simulations to investigate asphaltenes at the oil-water interface[J]. Energy & Fuels, 2015, 29(3): 1597-1609. |
184 | Rane J P, Pauchard V, Couzis A, et al. Interfacial rheology of asphaltenes at oil-water interfaces and interpretation of the equation of state[J]. Langmuir, 2013, 29(15): 4750-4759. |
185 | Zhang X Y, Wang J Y, Zhang X C, et al. Stability of asphaltene-mircoparticles co-stabilized emulsions by oxygen-enriched nonionic demulsifier[J]. Journal of Molecular Liquids, 2023, 381: 121819. |
186 | Li X G, Bai Y, Sui H, et al. Understanding desorption of oil fractions from mineral surfaces[J]. Fuel, 2018, 232: 257-266. |
187 | Wang J Y, Bai Y, Sui H, et al. Understanding the effects of salinity on bitumen-calcite interactions[J]. Fuel Processing Technology, 2021, 213: 106668. |
188 | McKenna A M, Donald L J, Fitzsimmons J E, et al. Heavy petroleum composition(3): Asphaltene aggregation[J]. Energy & fuels, 2013, 27(3): 1246-1256. |
189 | Santos D, Filho E B M, Dourado R S, et al. Study of asphaltene precipitation in crude oils at desalter conditions by near-infrared spectroscopy[J]. Energy & Fuels, 2017, 31(5): 5031-5036. |
190 | Biktagirov T B, Gafurov M R, Volodin M A, et al. Electron paramagnetic resonance study of rotational mobility of vanadyl porphyrin complexes in crude oil asphaltenes: probing the effect of thermal treatment of heavy oils[J]. Energy & Fuels, 2014, 28(10): 6683-6687. |
191 | Comisarow M B, Marshall A G. Fourier transform ion cyclotron resonance spectroscopy[J]. Chemical Physics Letters, 1974, 25(2): 282-283. |
192 | Adams J A, Shulman L P, Levi C J, et al. Literature reviews[J]. Adolescent and Pediatric Gynecology, 1992, 5(3): 203-209. |
193 | Jennings J, Growney D J, Brice H, et al. Application of scattering and diffraction techniques for the morphological characterization of asphaltenes[J]. Fuel, 2022, 327: 125042. |
194 | Sirota E B. Physical structure of asphaltenes[J]. Energy & Fuels, 2005, 19(4): 1290-1296. |
195 | Shi C, Xie L, Zhang L, et al. Probing the interaction mechanism between oil droplets with asphaltenes and solid surfaces using AFM[J]. Journal of Colloid and Interface Science, 2020, 558: 173-181. |
196 | Chen Q, Xu S M, Liu Q X, et al. QCM-D study of nanoparticle interactions[J]. Advances in Colloid and Interface Science, 2016, 233: 94-114. |
197 | Tavakkoli M, Panuganti S R, Taghikhani V, et al. Asphaltene deposition in different depositing environments(Part 2): Real oil[J]. Energy & Fuels, 2014, 28(6): 3594-3603. |
198 | Ekholm P, Blomberg E, Claesson P, et al. A quartz crystal microbalance study of the adsorption of asphaltenes and resins onto a hydrophilic surface[J]. Journal of Colloid and Interface Science, 2002, 247(2): 342-350. |
199 | Dudášová D, Silset A, Sjöblom J. Quartz crystal microbalance monitoring of asphaltene adsorption/deposition[J]. Journal of Dispersion Science and Technology, 2008, 29(1): 139-146. |
200 | da Costa L M, Stoyanov S R, Gusarov S, et al. Density functional theory investigation of the contributions of π–π stacking and hydrogen-bonding interactions to the aggregation of model asphaltene compounds[J]. Energy & Fuels, 2012, 26(5): 2727-2735. |
201 | Seidl P R, Oliveira J S C, da Costa L M, et al. A computational study on the steric effects of naphthenic moieties on aggregation interactions of nonconventional petroleum constituents[J]. Journal of Physical Organic Chemistry, 2015, 28(3): 234-241. |
202 | Headen T F, Boek E S, Skipper N T. Evidence for asphaltene nanoaggregation in toluene and heptane from molecular dynamics simulations[J]. Energy & Fuels, 2009, 23(3): 1220-1229. |
203 | Pacheco-Sánchez J H, Zaragoza I P, Martínez-Magadán J M. Asphaltene aggregation under vacuum at different temperatures by molecular dynamics[J]. Energy & Fuels, 2003, 17(5): 1346-1355. |
204 | Teklebrhan R B, Jian C Y, Choi P, et al. Role of naphthenic acids in controlling self-aggregation of a polyaromatic compound in toluene[J]. The Journal of Physical Chemistry B, 2016, 120(14): 3516-3526. |
205 | Jian C Y, Tang T A, Bhattacharjee S. Molecular dynamics investigation on the aggregation of Violanthrone78-based model asphaltenes in toluene[J]. Energy & Fuels, 2014, 28(6): 3604-3613. |
206 | Frigerio F, Molinari D. A multiscale approach to the simulation of asphaltenes[J]. Computational and Theoretical Chemistry, 2011, 975(1/2/3): 76-82. |
207 | Sedghi M, Goual L, Welch W, et al. Effect of asphaltene structure on association and aggregation using molecular dynamics[J]. The Journal of Physical Chemistry B, 2013, 117(18): 5765-5776. |
208 | Zhu X Z, Wu G Z, Coulon F, et al. Correlating asphaltene dimerization with its molecular structure by potential of mean force calculation and data mining[J]. Energy & Fuels, 2018, 32(5): 5779-5788. |
209 | Ortega-Rodriguez A, Duda Y, Guevara-Rodriguez F, et al. Stability and aggregation of asphaltenes in asphaltene-resin-solvent mixtures[J]. Energy & Fuels, 2004, 18(3): 674-681. |
210 | 关冬, 张霖宙, 赵锁奇, 等. 重质油稳定性的耗散粒子动力学模拟[J]. 化工学报, 2022, 73(10): 4613-4624. |
Guan D, Zhang L Z, Zhao S Q, et al. Dissipative particle dynamics simulation of the stability of heavy oil[J]. CIESC Journal, 2022, 73(10): 4613-4624. | |
211 | Zhang S F, Xu J B, Wen H, et al. Integration of rotational algorithms into dissipative particle dynamics: modeling polyaromatic hydrocarbons on the meso-scale[J]. Molecular Physics, 2011, 109(15): 1873-1888. |
212 | Jiménez-Serratos G, Totton T S, Jackson G, et al. Aggregation behavior of model asphaltenes revealed from large-scale coarse-grained molecular simulations[J]. The Journal of Physical Chemistry B, 2019, 123(10): 2380-2396. |
213 | Aguilera-Mercado B, Herdes C, Murgich J, et al. Mesoscopic simulation of aggregation of asphaltene and resin molecules in crude oils[J]. Energy & Fuels, 2006, 20(1): 327-338. |
214 | Vicente L, Soto C, Pacheco-Sánchez H, et al. Application of molecular simulation to calculate miscibility of a model asphaltene molecule[J]. Fluid Phase Equilibria, 2006, 239(1): 100-106. |
215 | Faraji M, Solaimany Nazar A R. A study of the dynamic evolution of asphaltene aggregate size distribution using Monte Carlo simulation[J]. Energy & Fuels, 2010, 24(9): 4952-4960. |
216 | Ji D L, Liu G, Zhang X L, et al. Molecular dynamics study on the adsorption of heavy oil drops on a silica surface with different hydrophobicity[J]. Energy & Fuels, 2020, 34(6): 7019-7028. |
217 | Sun W Y, Zeng H B, Tang T. Molecular dynamics simulation of model asphaltenes between surfaces of varying polarity[J]. Fuel, 2023, 331: 125842. |
218 | Qin T Z, Javanbakht G, Goual L. Nanoscale investigation of surfactant-enhanced solubilization of asphaltenes from silicate-rich rocks[J]. Energy & Fuels, 2019, 33(5): 3796-3807. |
219 | Zhang J, Wei Q, Zhu B J, et al. Asphaltene aggregation and deposition in pipeline: insight from multiscale simulation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649: 129394. |
220 | Qi M H, Moghanloo R, Su X, et al. An integrated simulation approach for wellbore blockage considering precipitation, aggregation, and deposition of asphaltene particles[J]. SPE Journal, 2021, 26(5): 3151-3166. |
221 | Goual L, Sedghi M, Wang X X, et al. Asphaltene aggregation and impact of alkylphenols[J]. Langmuir, 2014, 30(19): 5394-5403. |
222 | Jiang B, Zhang R Y, Yang N, et al. Molecular mechanisms of suppressing asphaltene aggregation and flocculation by dodecylbenzenesulfonic acid probed by molecular dynamics simulations[J]. Energy & Fuels, 2019, 33(6): 5067-5080. |
223 | Mousavi M, Pahlavan F, Oldham D, et al. Alteration of intermolecular interactions between units of asphaltene dimers exposed to an amide-enriched modifier[J]. RSC Advances, 2016, 6(58): 53477-53492. |
224 | Liu J A, Zhao Y P, Ren S L. Molecular dynamics simulation of self-aggregation of asphaltenes at an oil/water interface: formation and destruction of the asphaltene protective film[J]. Energy & Fuels, 2015, 29(2): 1233-1242. |
225 | Mizuhara J, Liang Y F, Masuda Y, et al. Evaluation of asphaltene adsorption free energy at the oil-water interface: role of heteroatoms[J]. Energy & Fuels, 2020, 34(5): 5267-5280. |
226 | Teklebrhan R B, Ge L L, Bhattacharjee S, et al. Initial partition and aggregation of uncharged polyaromatic molecules at the oil-water interface: a molecular dynamics simulation study[J]. The Journal of Physical Chemistry B, 2014, 118(4): 1040-1051. |
227 | Liu J A, Li X C, Liu J, et al. Molecular level separation of crude oil/water emulsion on carbon nanotube surface induced by weak interaction: a molecular dynamic simulation study[J]. Journal of Dispersion Science and Technology, 2020, 41(13): 1991-2001. |
228 | Lian P, Jia H, Wei X, et al. Effects of zwitterionic surfactant adsorption on the component distribution in the crude oil droplet: a molecular simulation study[J]. Fuel, 2021, 283: 119252. |
229 | Zhou J J, Zhang X C, He L, et al. Nano-modification of carboxylated polyether for enhanced room temperature demulsification of oil-water emulsions: synthesis, performance and mechanisms[J]. Journal of Hazardous Materials, 2022, 439: 129654. |
230 | Ma J, Yang Y L, Li X G, et al. Mechanisms on the stability and instability of water-in-oil emulsion stabilized by interfacially active asphaltenes: role of hydrogen bonding reconstructing[J]. Fuel, 2021, 297: 120763. |
231 | Li T, Xu J, Zou R, et al. Resin from Liaohe heavy oil: molecular structure, aggregation behavior, and effect on oil viscosity[J]. Energy & Fuels, 2018, 32(1): 306-313. |
232 | Lima F C D A, da Silva Alvim R, Miranda C R. From single asphaltenes and resins to nanoaggregates: a computational study[J]. Energy & Fuels, 2017, 31(11): 11743-11754. |
233 | Hernández-Bravo R, Miranda A D, Martínez-Magadán J M, et al. Experimental and theoretical study on supramolecular ionic liquid (IL)-asphaltene complex interactions and their effects on the flow properties of heavy crude oils[J]. The Journal of Physical Chemistry B, 2018, 122(15): 4325-4335. |
234 | Mao J C, Liu J W, Peng Y K, et al. Quadripolymers as viscosity reducers for heavy oil[J]. Energy & Fuels, 2018, 32(1): 119-124. |
235 | Lv X B, Fan W Y, Wang Q T, et al. Synthesis, characterization, and mechanism of copolymer viscosity reducer for heavy oil[J]. Energy & Fuels, 2019, 33(5): 4053-4061. |
[1] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[2] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[3] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[4] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[5] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[6] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[7] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[8] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[9] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[10] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[11] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
[12] | 张金鹏, 王强, 王艳美, 严舒, 吴建波, 张慧, 白红存. 镍基载氧体化学链燃烧过程中宁夏QH和YCW煤分子结构演化特征及对比分析[J]. 化工学报, 2023, 74(10): 4252-4266. |
[13] | 陈睿哲, 刘永峰, 殷晨阳, 王龙, 张璐, 宋金瓯. 1-硝基丙烷引发正己烷热解的机理研究[J]. 化工学报, 2023, 74(10): 4319-4329. |
[14] | 郑直, 郭乃胜, 尤占平, 王家伟. 废木油与石油沥青相容机制的分子动力学研究[J]. 化工学报, 2023, 74(10): 4037-4050. |
[15] | 廖艺, 牛亚宾, 潘艳秋, 俞路. 复配表面活性剂对油水界面行为和性质影响的模拟研究[J]. 化工学报, 2022, 73(9): 4003-4014. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||