化工学报 ›› 2023, Vol. 74 ›› Issue (9): 3931-3945.DOI: 10.11949/0438-1157.20230557
收稿日期:
2023-06-09
修回日期:
2023-09-02
出版日期:
2023-09-25
发布日期:
2023-11-20
通讯作者:
田世祥
作者简介:
赵佳佳(1998—),男,硕士研究生,1845628454@qq.com
基金资助:
Jiajia ZHAO1(), Shixiang TIAN1,2(), Peng LI3, Honggao XIE1
Received:
2023-06-09
Revised:
2023-09-02
Online:
2023-09-25
Published:
2023-11-20
Contact:
Shixiang TIAN
摘要:
煤尘污染是世界煤炭行业亟需解决的难题之一,探索绿色高效的新型煤尘润湿剂对于该领域来说具有潜在的应用价值。以Wender模型为研究对象,借助Materials Studio分子模拟软件与物理实验探究了SiO2-H2O纳米流体对煤尘润湿性的影响机制。研究表明:SiO2纳米颗粒(NPs)的反应活性较高,其表面羟基容易与煤分子和水分子形成氢键,从而影响煤尘的润湿特性。NPs与煤分子的相互作用能力较强,其吸附在煤尘表面后能吸附更多的水分子。当体系中NPs的吸附数量为0~5时,随NPs数量的增加,吸附体系中煤和NPs、NPs和水之间的相互作用能以及固-液分子间氢键的数量呈增大的趋势。煤和NPs中氢、氧原子之间的g(r)曲线值最大,峰值较高,而煤和水中氢、氧原子之间的g(r)曲线与之相反。随着NPs吸附数量的增加,水分子均方位移与扩散系数呈增大的趋势,加速了对煤尘的润湿。与水相比,纳米流体具有较低的表面张力,当颗粒浓度为2.0%(质量)时,改性煤尘接触角下降率达到了52.85%~61.51%,同时纳米流体处理后的煤尘表面NPs吸附集聚现象明显。本研究分子模拟结果与实验结果相互验证,阐明了NPs强化煤尘润湿性的微观机理,获得了NPs对煤尘润湿性的影响规律,揭示了NPs在煤尘表面的吸附特征,为SiO2-H2O纳米流体强化煤尘润湿性奠定了理论基础。
中图分类号:
赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945.
Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust[J]. CIESC Journal, 2023, 74(9): 3931-3945.
编号 | 显微组分含量/% | |||
---|---|---|---|---|
镜质组 | 惰质组 | 壳质组 | ||
RB | 56.9 | 37.9 | 5.2 | 0.46 |
HY | 54.7 | 40.1 | 5.2 | 0.56 |
SM | 60.3 | 31.7 | 8.0 | 0.58 |
JP | 63.5 | 30.3 | 6.2 | 0.63 |
表1 煤样的显微组分含量与镜质组反射率
Table 1 Maceral content and vitrinite reflectance of coal samples
编号 | 显微组分含量/% | |||
---|---|---|---|---|
镜质组 | 惰质组 | 壳质组 | ||
RB | 56.9 | 37.9 | 5.2 | 0.46 |
HY | 54.7 | 40.1 | 5.2 | 0.56 |
SM | 60.3 | 31.7 | 8.0 | 0.58 |
JP | 63.5 | 30.3 | 6.2 | 0.63 |
NPs数量 | 相互作用能 (kcal/mol) | |||
---|---|---|---|---|
W&C | N&C | N&W | W&C-N | |
0 | -411.15 | — | — | — |
1 | -418.20 | -56.02 | -25.91 | -444.11 |
2 | -415.45 | -100.86 | -55.32 | -470.77 |
3 | -392.47 | -124.25 | -75.59 | -468.06 |
4 | -344.58 | -170.64 | -123.19 | -467.77 |
5 | -265.84 | -167.99 | -162.17 | -428.01 |
表2 分子间相互作用能
Table 2 Interaction energy of the molecular
NPs数量 | 相互作用能 (kcal/mol) | |||
---|---|---|---|---|
W&C | N&C | N&W | W&C-N | |
0 | -411.15 | — | — | — |
1 | -418.20 | -56.02 | -25.91 | -444.11 |
2 | -415.45 | -100.86 | -55.32 | -470.77 |
3 | -392.47 | -124.25 | -75.59 | -468.06 |
4 | -344.58 | -170.64 | -123.19 | -467.77 |
5 | -265.84 | -167.99 | -162.17 | -428.01 |
NPs数量 | 拟合方程 | R2 | Dc/(Å2/ps) |
---|---|---|---|
0 | y=1.132x+1.297 | 0.9995 | 0.1887 |
1 | y=1.253x+7.265 | 0.9991 | 0.2088 |
2 | y=1.322x+4.610 | 0.9998 | 0.2203 |
3 | y=1.371x+5.423 | 0.9996 | 0.2285 |
4 | y=1.473x+2.898 | 0.9998 | 0.2455 |
5 | y=1.586x+0.363 | 0.9999 | 0.2643 |
表3 水分子均方位移的线性拟合参数和扩散系数
Table 3 Linear fitting parameters and diffusion coefficients of mean square displacement of water molecules
NPs数量 | 拟合方程 | R2 | Dc/(Å2/ps) |
---|---|---|---|
0 | y=1.132x+1.297 | 0.9995 | 0.1887 |
1 | y=1.253x+7.265 | 0.9991 | 0.2088 |
2 | y=1.322x+4.610 | 0.9998 | 0.2203 |
3 | y=1.371x+5.423 | 0.9996 | 0.2285 |
4 | y=1.473x+2.898 | 0.9998 | 0.2455 |
5 | y=1.586x+0.363 | 0.9999 | 0.2643 |
1 | 王博阳, 夏吉利, 董晓玲, 等. 不同变质程度煤衍生硬炭的储钠行为研究[J]. 化工学报, 2021, 72(11): 5738-5750. |
Wang B Y, Xia J L, Dong X L, et al. Study on sodium storage behavior of hard carbons derived from coal with different grades of metamorphism[J]. CIESC Journal, 2021, 72(11): 5738-5750. | |
2 | 程卫民, 周刚, 陈连军, 等. 我国煤矿粉尘防治理论与技术20年研究进展及展望[J]. 煤炭科学技术, 2020, 48(2): 1-20. |
Cheng W M, Zhou G, Chen L J, et al. Research progress and prospect of dust control theory and technology in China's coal mines in the past 20 years[J]. Coal Science and Technology, 2020, 48(2): 1-20. | |
3 | 裴蓓,康亚祥,余明高,等.点火延迟时间对CO2-超细水雾的抑爆特性影响[J]. 化工学报, 2022, 73(12): 5672-5684. |
Pei B, Kang Y X, Yu M G, et al. Effect of ignition delay time on explosion suppression characteristics of CO2-ultra-fine water mist[J]. CIESC Journal, 2022, 73(12): 5672-5684. | |
4 | Ma Y L, Sun J, Ding J F, et al. Synthesis and characterization of a penetrating and pre-wetting agent for coal seam water injection[J]. Powder Technology, 2021, 380: 368-376. |
5 | Xiu Z H, Nie W, Yan J Y, et al. Numerical simulation study on dust pollution characteristics and optimal dust control air flow rates during coal mine production[J]. Journal of Cleaner Production, 2020, 248: 119197. |
6 | Xu C W, Nie W, Peng H T, et al. Numerical simulation of the dynamic wetting of coal dust by spray droplets[J]. Energy, 2023, 270: 126667. |
7 | Li S H, Cheng H, Hu S D, et al. Study on the influence of built-in open-hole dust cleaner on the cleaning performance of cartridge filter[J]. Process Safety and Environmental Protection, 2023, 173: 786-799. |
8 | Zhu J T, He X J, Wang L, et al. Performance of N95 elastomeric respirators in high humidity and high coal dust concentration environment[J]. International Journal of Mining Science and Technology, 2022, 32(1): 215-224. |
9 | Jiang H H, Ni G H, Zhu C J, et al. Molecular dynamics simulations and experimental characterization of the effect of different concentrations of [Bmim][Cl] in aqueous solutions on the wettability of anthracite[J]. Fuel, 2022, 324: 124618. |
10 | Zhou Q, Qin B T. Coal dust suppression based on water mediums: a review of technologies and influencing factors[J]. Fuel, 2021, 302: 121196. |
11 | Wang P F, Tan X H, Zhang L Y, et al. Influence of particle diameter on the wettability of coal dust and the dust suppression efficiency via spraying[J]. Process Safety and Environmental Protection, 2019, 132: 189-199. |
12 | Wang K, Zhang Y C, Cai W Y, et al. Study on the microscopic mechanism and optimization of dust suppression by compounding biological surfactants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625: 126850. |
13 | Niu W J, Nie W, Bao Q, et al. Study on the effects of surfactants on the interface characteristics and wettability of lignite[J]. Powder Technology, 2023, 423: 118482. |
14 | Wang G, Wang E M, Huang Q M, et al. Effects of cationic and anionic surfactants on long flame coal seam water injection[J]. Fuel, 2022, 309: 122233. |
15 | Zhao Z D, Chang P, Xu G, et al. Comparison of the coal dust suppression performance of surfactants using static test and dynamic test[J]. Journal of Cleaner Production, 2021, 328: 129633. |
16 | Shi G Q, Han C, Wang Y M, et al. Experimental study on synergistic wetting of a coal dust with dust suppressant compounded with noncationic surfactants and its mechanism analysis[J]. Powder Technology, 2019, 356: 1077-1086. |
17 | Johnson P, Trybala A, Starov V, et al. Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants[J]. Advances in Colloid and Interface Science, 2021, 288: 102340. |
18 | Kaczerewska O, Martins R, Figueiredo J, et al. Environmental behaviour and ecotoxicity of cationic surfactants towards marine organisms[J]. Journal of Hazardous Materials, 2020, 392: 122299. |
19 | Xu C, Dobson H E, Yu M J, et al. STING agonist-loaded mesoporous manganese-silica nanoparticles for vaccine applications[J]. Journal of Controlled Release, 2023, 357: 84-93. |
20 | Liu J N, Wang Y P, Wang M Z, et al. Improving the uptake of PAHs by the ornamental plant Sedum spectabile using nano-SiO2 and nano-CeO2 [J]. Science of the Total Environment, 2023, 870: 161808. |
21 | Pazini A, Maqueira L, Façanha J M F, et al. Synthesis of core-shell fluorescent silica nanoparticles with opposite surface charges for transport studies of nanofluids in porous media[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 670: 131586. |
22 | Schneider M, Cesca K, de Amorim S M, et al. Synthesis and characterization of silica-based nanofluids for enhanced oil recovery[J]. Journal of Materials Research and Technology, 2023, 24: 4143-4152. |
23 | Kumar R S, Al-Arbi Ganat T, Sharma T. Performance evaluation of silica nanofluid for sand column transport with simultaneous wettability alteration: an approach to environmental issue[J]. Journal of Cleaner Production, 2021, 303: 127047. |
24 | Wan X Y, Yang Y H, Jia B, et al. Simulation of gas production mechanisms in shear deformation of medium-rank coal[J]. ACS Omega, 2022, 7(1): 342-350. |
25 | Mansouri M, Nakhaee A, Pourafshary P. Effect of SiO2 nanoparticles on fines stabilization during low salinity water flooding in sandstones[J]. Journal of Petroleum Science and Engineering, 2019, 174: 637-648. |
26 | Zhou Y X, Wu X, Zhong X, et al. Surfactant-augmented functional silica nanoparticle based nanofluid for enhanced oil recovery at high temperature and salinity[J]. ACS Applied Materials & Interfaces, 2019, 11(49): 45763-45775. |
27 | Al-Anssari S, Arif M, Wang S B, et al. Wettability of nanofluid-modified oil-wet calcite at reservoir conditions[J]. Fuel, 2018, 211: 405-414. |
28 | Zhang T C, Zou Q L, Jia X Q, et al. Effect of cyclic water injection on the wettability of coal with different SiO2 nanofluid treatment time[J]. Fuel, 2022, 312: 122922. |
29 | Wang G, Li Y Q, Wang E M, et al. Experimental study on preparation of nanoparticle-surfactant nanofluids and their effects on coal surface wettability[J]. International Journal of Mining Science and Technology, 2022, 32(2): 387-397. |
30 | Qian W M, Vahid M H, Sun Y L, et al. Investigation on the effect of functionalization of single-walled carbon nanotubes on the mechanical properties of epoxy glass composites: experimental and molecular dynamics simulation[J]. Journal of Materials Research and Technology, 2021, 12: 1931-1945. |
31 | Ni G H, Wang H, Nie B S, et al. Research of wetting selectivity and wetting effect of imidazole ionic liquids on coal[J]. Fuel, 2021, 286: 119331. |
32 | 陈炫来, 严国超, 阳湘琳, 等. SDS/SDBS对无烟煤润湿性影响的分子动力学模拟[J]. 煤炭科学技术, 2022, 50(12): 185-193. |
Chen X L, Yan G C, Yang X L, et al. Molecular dynamics simulation of the effect of SDS/SDBS on the wettability of anthracite[J]. Coal Science and Technology, 2022, 50(12): 185-193. | |
33 | Gan J, Wang D M, Xiao Z M, et al. Experimental and molecular dynamics investigations of the effects of ionic surfactants on the wettability of low-rank coal [J]. Energy, 2023, 271: 127012. |
34 | Liu Z Q, Zhou G, Duan J J, et al. Preparation of composite high-efficiency dust suppressant and relevant molecular dynamics simulation for wetting coal surface[J]. Fuel, 2021, 296: 120579. |
35 | Firooz A F, Hashemi A, Zargar G, et al. Molecular dynamics modeling and simulation of silicon dioxide-low salinity water nanofluid for enhanced oil recovery[J]. Journal of Molecular Liquids, 2021, 339: 116834. |
36 | Li W H, Nan Y L, You Q, et al. Effects of salts and silica nanoparticles on oil-brine interfacial properties under hydrocarbon reservoir conditions: a molecular dynamics simulation study[J]. Journal of Molecular Liquids, 2020, 305: 112860. |
37 | 梁运培, 王庆慧, 朱拴成, 等. 深部低煤阶煤层高值化学品与天然气共采技术构想[J]. 煤炭学报, 2023, 48(1): 317-334. |
Liang Y P, Wang Q H, Zhu S C, et al. Technical conception of co-exploitation of high-value chemicals and natural gas in deep low-rank coal seam[J]. Journal of China Coal Society, 2023, 48(1): 317-334. | |
38 | Zeng Q Y, Li C K, Zhao D W, et al. Atomic-scale study on particle movement mechanism during silicon substrate cleaning using ReaxFF MD[J]. Computational Materials Science, 2022, 214: 111751. |
39 | Wei Q H, Wang Y N, Rao Y W, et al. Evaluating the effects of nanosilica on mechanical and tribological properties of polyvinyl alcohol/polyacrylamide polymer composites for artificial cartilage from an atomic level[J]. Polymers, 2019, 11(1): 76. |
40 | Xia Y C, Yang Z L, Zhang R, et al. Enhancement of the surface hydrophobicity of low-rank coal by adsorbing DTAB: an experimental and molecular dynamics simulation study[J]. Fuel, 2019, 239: 145-152. |
41 | Zhang R, Xing Y W, Xia Y C, et al. New insight into surface wetting of coal with varying coalification degree: an experimental and molecular dynamics simulation study[J]. Applied Surface Science, 2020, 511: 145610. |
42 | He M, Zhang W, Cao X Q, et al. Adsorption behavior of surfactant on lignite surface: a comparative experimental and molecular dynamics simulation study[J]. International Journal of Molecular Sciences, 2018, 19(2): 437. |
43 | 张建国, 刘依婷, 王满, 等. 基于分子动力学模拟的非离子表面活性剂对煤润湿性影响机制[J]. 工程科学与技术, 2022, 54(5): 191-202. |
Zhang J G, Liu Y T, Wang M, et al. Influence mechanism of nonionic surfactant on coal wettability based on molecular dynamics simulation[J]. Advanced Engineering Sciences, 2022, 54(5): 191-202. | |
44 | Liu Z Q, Zhou G, Li S L, et al. Molecular dynamics simulation and experimental characterization of anionic surfactant: influence on wettability of low-rank coal[J]. Fuel, 2020, 279: 118323. |
45 | Li B, Liu S Y, Fan M Q, et al. The effect of ethylene oxide groups in dodecyl ethoxyl ethers on low rank coal flotation: an experimental study and simulation[J]. Powder Technology, 2019, 344: 684-692. |
46 | Bao C H, Zheng C F, Xu Y, et al. Role of rejuvenator properties in determining the activation effects on aged asphalt based on molecular simulations[J]. Journal of Cleaner Production, 2023, 405: 136970. |
47 | Yuan M, Nie W, Yu H, et al. Experimental and molecular dynamics simulation study of the effect of different surfactants on the wettability of low-rank coal[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105986. |
48 | Jin H, Zhang Y S, Dong H T, et al. Molecular dynamics simulations and experimental study of the effects of an ionic surfactant on the wettability of low-rank coal[J]. Fuel, 2022, 320: 123951. |
49 | Xi Z L, Xia T, Shen L L, et al. Synthesis of cardanol grafted hydrophilic polymers and its mechanism of coal dust inhibition[J]. Fuel, 2023, 345: 128112. |
50 | 高晓荣, 崔勇, 赵晓霞, 等. 羟基和酯基型Gemini双季铵盐表面活性剂在煤沥青表面的润湿特性[J]. 化工学报, 2017, 68(1): 230-237. |
Gao X R, Cui Y, Zhao X X, et al. Wettability on coal tar asphalt surface of dual quaternary ammonium salt Gemini surfactants containing ester and hydroxyl groups[J]. CIESC Journal, 2017, 68(1): 230-237. |
[1] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[2] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[3] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[4] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[5] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[6] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[7] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[8] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
[9] | 杨松涛, 李东洋, 牛玉清, 李鑫钢, 康绍辉, 李洪, 叶开凯, 周志全, 高鑫. 氟化物势能函数和热力学性质的分子模拟研究进展[J]. 化工学报, 2022, 73(9): 3828-3840. |
[10] | 廖艺, 牛亚宾, 潘艳秋, 俞路. 复配表面活性剂对油水界面行为和性质影响的模拟研究[J]. 化工学报, 2022, 73(9): 4003-4014. |
[11] | 郑默, 李晓霞. ReaxFF MD模拟揭示的煤热解挥发分自由基反应的竞争与协调[J]. 化工学报, 2022, 73(6): 2732-2741. |
[12] | 李春晖, 何辉, 何明键, 张萌, 高杨, 矫彩山. 离子液体萃取硝酸中Ce(Ⅳ)的动力学研究[J]. 化工学报, 2022, 73(4): 1606-1614. |
[13] | 王瑞, 任瑛, 陈卫, 韩永生. 冰水界面动态结构的分子动力学模拟研究[J]. 化工学报, 2022, 73(3): 1315-1323. |
[14] | 张瑾渊, 徐娜, 贺文云, 吕耀东, 刘子璐, 张兴芳. 消防用PEO/OTAC/NaSal减阻体系的介观分子动力学分析[J]. 化工学报, 2022, 73(3): 1157-1165. |
[15] | 裴蓓, 康亚祥, 余明高, 郭佳琪, 韦双明, 陈立伟. 点火延迟时间对CO2-超细水雾的抑爆特性影响[J]. 化工学报, 2022, 73(12): 5672-5684. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||