化工学报 ›› 2022, Vol. 73 ›› Issue (2): 722-729.DOI: 10.11949/0438-1157.20210926
收稿日期:
2021-07-05
修回日期:
2021-11-15
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
林东尧
作者简介:
周云龙(1960—),男,博士,教授,基金资助:
Yunlong ZHOU(),Dongyao LIN(),Xiaoyuan YE,Bo SUN
Received:
2021-07-05
Revised:
2021-11-15
Online:
2022-02-05
Published:
2022-02-18
Contact:
Dongyao LIN
摘要:
以玉米秸秆为牺牲剂、Pt/TiO2为催化剂,研究玉米秸秆不同部位、不同组分以及液相环境的pH、常见阴阳离子的加入对光催化制氢的影响。利用XRD、TGA和UV-vis DRS表征玉米秸秆的组分和光吸收特性。结果表明,在pH=5~7时制氢量适中、pH<5和pH=8~10时制氢受到抑制、pH>10时制氢得到提升;强酸阴离子、强碱金属离子对该体系制氢无影响;
中图分类号:
周云龙, 林东尧, 叶校源, 孙博. 常见离子对玉米秸秆为牺牲剂的光催化制氢影响[J]. 化工学报, 2022, 73(2): 722-729.
Yunlong ZHOU, Dongyao LIN, Xiaoyuan YE, Bo SUN. Effect of ions on photocatalytic H2 production using corn straw as sacrificial agent[J]. CIESC Journal, 2022, 73(2): 722-729.
样品 | 含量/% | |||
---|---|---|---|---|
纤维素 | 半纤维素 | 木质素 | 其他成分 | |
秸叶 | 28.49 | 32.14 | 3.30 | 36.07 |
秸穂 | 28.34 | 30.65 | 2.96 | 38.05 |
秸皮 | 31.68 | 21.37 | 5.73 | 41.22 |
秸髓 | 26.96 | 28.68 | 2.02 | 42.34 |
玉米秸秆(总) | 28.00 | 21.50 | 4.46 | 46.04 |
表1 玉米秸秆不同部位的成分含量
Table 1 Component content of different parts of corn straw
样品 | 含量/% | |||
---|---|---|---|---|
纤维素 | 半纤维素 | 木质素 | 其他成分 | |
秸叶 | 28.49 | 32.14 | 3.30 | 36.07 |
秸穂 | 28.34 | 30.65 | 2.96 | 38.05 |
秸皮 | 31.68 | 21.37 | 5.73 | 41.22 |
秸髓 | 26.96 | 28.68 | 2.02 | 42.34 |
玉米秸秆(总) | 28.00 | 21.50 | 4.46 | 46.04 |
pH | 电位/mV | ||
---|---|---|---|
Pt/TiO2 | 玉米秸秆 | 混合体系 | |
2 | 21.10 | 15.21 | 16.09 |
4 | 15.89 | -5.01 | 6.66 |
6 | 8.93 | -11.84 | 3.33 |
8 | -10.21 | -13.27 | -12.02 |
10 | -31.06 | -14.50 | -18.15 |
12 | -39.96 | -16.44 | -29.62 |
表2 pH对反应体系的表面静电荷的影响
Table 2 Effect of pH on surface electrostatic charge of reaction system
pH | 电位/mV | ||
---|---|---|---|
Pt/TiO2 | 玉米秸秆 | 混合体系 | |
2 | 21.10 | 15.21 | 16.09 |
4 | 15.89 | -5.01 | 6.66 |
6 | 8.93 | -11.84 | 3.33 |
8 | -10.21 | -13.27 | -12.02 |
10 | -31.06 | -14.50 | -18.15 |
12 | -39.96 | -16.44 | -29.62 |
1 | Liu X Q, Duan X G, Wei W, et al. Photocatalytic conversion of lignocellulosic biomass to valuable products[J]. Green Chemistry, 2019, 21(16): 4266-4289. |
2 | Yang J C, Kim Y C, Shul Y G, et al. Characterization of photoreduced Pt/TiO2 and decomposition of dichloroacetic acid over photoreduced Pt/TiO2 catalysts[J]. Applied Surface Science, 1997, 121/122: 525-529. |
3 | Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J]. Chemical Society Reviews, 2009, 38(1): 253-278. |
4 | Zong X, Han J F, Ma G J, et al. Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation[J]. The Journal of Physical Chemistry C, 2011, 115(24): 12202-12208. |
5 | Zhang L J, Hao X Q, Li Y B, et al. Performance of WO3/g-C3N4 heterojunction composite boosting with NiS for photocatalytic hydrogen evolution[J]. Applied Surface Science, 2020, 499: 143862. |
6 | Puga A V. Photocatalytic production of hydrogen from biomass-derived feedstocks[J]. Coordination Chemistry Reviews, 2016, 315: 1-66. |
7 | Kawai T, Sakata T. Conversion of carbohydrate into hydrogen fuel by a photocatalytic process[J]. Nature, 1980, 286(5772): 474-476. |
8 | Kadam S R, Mate V R, Panmand R P, et al. A green process for efficient lignin (biomass) degradation and hydrogen production via water splitting using nanostructured C, N, S-doped ZnO under solar light[J]. RSC Advances, 2014, 4(105): 60626-60635. |
9 | Speltini A, Sturini M, Dondi D, et al. Sunlight-promoted photocatalytic hydrogen gas evolution from water-suspended cellulose: a systematic study[J]. Photochemical & Photobiological Sciences, 2014, 13(10): 1410-1419. |
10 | Zhang G, Ni C S, Huang X B, et al. Simultaneous cellulose conversion and hydrogen production assisted by cellulose decomposition under UV-light photocatalysis[J]. Chemical Communications (Cambridge, England), 2016, 52(8): 1673-1676. |
11 | Kondarides D I, Daskalaki V M, Patsoura A, et al. Hydrogen production by photo-induced reforming of biomass components and derivatives at ambient conditions[J]. Catalysis Letters, 2008, 122(1/2): 26-32. |
12 | Fu X L, Long J L, Wang X X, et al. Photocatalytic reforming of biomass: a systematic study of hydrogen evolution from glucose solution[J]. International Journal of Hydrogen Energy, 2008, 33(22): 6484-6491. |
13 | St John M R, Furgala A J, Sammells A F. Hydrogen generation by photocatalytic oxidation of glucose by platinized n-titania powder[J]. The Journal of Physical Chemistry, 1983, 87(5): 801-805. |
14 | Davda R R, Shabaker J W, Huber G W, et al. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts[J]. Applied Catalysis B: Environmental, 2005, 56(1/2): 171-186. |
15 | Chen S S, Takata T, Domen K. Particulate photocatalysts for overall water splitting[J]. Nature Reviews Materials, 2017, 2: 17050. |
16 | 李允琛. 浅析我国水资源现状与问题[J]. 农村科学实验, 2020(1): 70-71. |
Li Y C. Analysis on the current situation and problems of water resources in China[J]. Rural Scientific Experiment, 2020(1): 70-71. | |
17 | 敬登伟, 汤文东, 邢婵娟, 等. 硫化镉复合光催化剂在模拟有机污染物体系中光催化制氢研究[J]. 燃料化学学报, 2011, 39(2): 135-139. |
Jing D W, Tang W D, Xing C J, et al. Study on photocatalytic hydrogen production in simulated organic pollutants over cadmium sulfide composite photocatalyst[J]. Journal of Fuel Chemistry and Technology, 2011, 39(2): 135-139. | |
18 | Yu Y M, Zhu L J, Liu G K, et al. Pd quantum dots loading Ti3+, N co-doped TiO2 nanotube arrays with enhanced photocatalytic hydrogen production and the salt ions effects[J]. Applied Surface Science, 2021, 540: 148239. |
19 | 李芳芹, 孙辰豪, 任建兴, 等. 以污染物作为电子给体的新型光催化制氢体系的研究进展[J]. 化工进展, 2021, 40(9): 4791-4805. |
Li F Q, Sun C H, Ren J X, et al. Research progress of novel photocatalytic hydrogen production system with pollutants as electron donors[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4791-4805. | |
20 | 周云龙, 叶校源, 林东尧. 在紫外光下以玉米秸秆为牺牲剂提升光催化分解水制氢[J]. 化工学报, 2019, 70(7): 2717-2726. |
Zhou Y L, Ye X Y, Lin D Y. Photocatalytic hydrogen evolution by using corn stover as sacrificial agent under UV light irradiation[J]. CIESC Journal, 2019, 70(7): 2717-2726. | |
21 | Asha K, Badamali S K. Highly efficient photocatalytic degradation of lignin by hydrogen peroxide under visible light[J]. Molecular Catalysis, 2020, 497: 111236. |
22 | Wakerley D W, Kuehnel M F, Orchard K L, et al. Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst[J]. Nature Energy, 2017, 2: 17021. |
23 | Bamwenda G R, Tsubota S, Nakamura T, et al. Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au/TiO2 and Pt/TiO2[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 89(2): 177-189. |
24 | Bamwenda G R, Tsubota S, Kobayashi T, et al. Photoinduced hydrogen production from an aqueous solution of ethylene glycol over ultrafine gold supported on TiO2[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1994, 77(1): 59-67. |
25 | Maeda K. Photocatalytic properties of rutile TiO2 powder for overall water splitting[J]. Catalysis Science and Technology, 2014, 4(7): 1949-1953. |
26 | Zheng X J, Wei L F, Zhang Z H, et al. Research on photocatalytic H2 production from acetic acid solution by Pt/TiO2 nanoparticles under UV irradiation[J]. International Journal of Hydrogen Energy, 2009, 34(22): 9033-9041. |
27 | Reynal A, Pastor E, Gross M A, et al. Unravelling the pH-dependence of a molecular photocatalytic system for hydrogen production[J]. Chemical Science, 2015, 6(8): 4855-4859. |
28 | Ryu S Y, Balcerski W, Lee T K, et al. Photocatalytic production of hydrogen from water with visible light using hybrid catalysts of CdS attached to microporous and mesoporous silicas[J]. The Journal of Physical Chemistry C, 2007, 111(49): 18195-18203. |
29 | Arakawa H, Sayama K. Solar hydrogen production. Significant effect of Na2CO3 addition on water splitting using simple oxide semiconductor photocatalysts[J]. Catalysis Surveys from Japan, 2000, 4(1): 75-80. |
30 | 王博文. 铜离子光还原及光催化Click反应的研究[D]. 北京: 北京化工大学, 2017. |
Wang B W. Photoreduction of Cu(Ⅱ) and photocatalytic click chemistry research[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
31 | 陈士夫, 曹更玉. H2O2、金属离子等对Cr(Ⅵ)离子光催化还原及对敌敌畏农药光催化氧化的影响[J]. 感光科学与光化学, 2002, 20(6): 435-440. |
Chen S F, Cao G Y. Effects of H2O2 metal ions etc. on the photocatalytic reduction of dichromate and photocatalytic oxidation of dichlorvos[J]. Photographic Science and Photochemistry, 2002, 20(6): 435-440. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[3] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[4] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[5] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[6] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[7] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[8] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[9] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[10] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[11] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[12] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[13] | 王阳, 戴永强, 曾炜. 2,5-二羟基苯磺酸增强离子水凝胶材料热电性能的研究[J]. 化工学报, 2023, 74(9): 3946-3955. |
[14] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[15] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||