化工学报 ›› 2021, Vol. 72 ›› Issue (10): 5412-5423.DOI: 10.11949/0438-1157.20210672
王振华1,2(),蒋军成1,3(),尤飞1,2,李刚1,2,庄陈浩1,2,赵耀鹏1,2,倪磊1,潘勇1,李丹1,2
收稿日期:
2021-05-16
修回日期:
2021-06-25
出版日期:
2021-10-05
发布日期:
2021-10-05
通讯作者:
蒋军成
作者简介:
王振华(1990—),男,博士,基金资助:
Zhenhua WANG1,2(),Juncheng JIANG1,3(),Fei YOU1,2,Gang LI1,2,Chenhao ZHUANG1,2,Yaopeng ZHAO1,2,Lei NI1,Yong PAN1,Dan LI1,2
Received:
2021-05-16
Revised:
2021-06-25
Online:
2021-10-05
Published:
2021-10-05
Contact:
Juncheng JIANG
摘要:
近年氢能已迅速成为能源领域“新宠”,正在迎来快速发展的战略机遇期,但氢安全问题仍然是制约其发展的关键,尤以高压氢气储运设施泄漏后引发喷射火灾害较为突出。为了探究高压氢气泄漏过程并对其引发喷射火灾特性参数变化进行评估,本文采用理论分析和实例验证相结合的方法对两起高压氢气泄漏实验案例(90 MPa氢气瓶和6 MPa氢气管道)进行了研究。结果表明:通过模型精度检验,Abel-Nobel气体状态方程适用于当前常用的多种高压氢气储运设施泄漏过程的描述。基于Abel-Nobel气体状态方程、火焰尺寸模型、辐射分数模型和热辐射模型构建的高压氢气泄漏喷射火过程预测模型对实验案例中的泄漏出口气体质量流量、氢喷射火焰长度和辐射热场等的模拟计算结果与实验测量数据基本一致,验证了模型有效性及所含假设合理性。另外在计算中还需要结合实际情况充分考虑高压氢气储运设施发生泄漏时产生的能量损失以及等温流动过程,从而对模型预测精度进行修正。上述结论对于工程实际、氢能安全利用以及灾害预防等具有重要现实意义。
中图分类号:
王振华,蒋军成,尤飞,李刚,庄陈浩,赵耀鹏,倪磊,潘勇,李丹. 高压氢气储运设施泄漏喷射火过程预测模型及其验证[J]. 化工学报, 2021, 72(10): 5412-5423.
Zhenhua WANG,Juncheng JIANG,Fei YOU,Gang LI,Chenhao ZHUANG,Yaopeng ZHAO,Lei NI,Yong PAN,Dan LI. Prediction model for the process of jet fire induced by the leakage of high-pressure hydrogen storage and transportation facilities and its validation[J]. CIESC Journal, 2021, 72(10): 5412-5423.
图1 Abel-Nobel气体状态方程以及NIST数据[31]所得的氢气密度比较(在Abel-Nobel气体状态方程中,对于氢气,b=7.69×10-3 m3/kg)
Fig.1 Comparison between predicted densities by using Abel-Nobel EOS and NIST’s recommended data [31] for hydrogen
案例 | 文献 | 设施 种类 | P1,0/MPa | T1,0/K | d2/m | V/m3 |
---|---|---|---|---|---|---|
实验1 | Proust等[ | 气瓶 | 90.0 | 315 | 1×10-3~3×10-3 | 0.025 |
实验2 | Acton等[ | 管道 | 6.1 | 298 | 0.15 | 163 |
表1 模型输入参数
Table 1 Model input parameters
案例 | 文献 | 设施 种类 | P1,0/MPa | T1,0/K | d2/m | V/m3 |
---|---|---|---|---|---|---|
实验1 | Proust等[ | 气瓶 | 90.0 | 315 | 1×10-3~3×10-3 | 0.025 |
实验2 | Acton等[ | 管道 | 6.1 | 298 | 0.15 | 163 |
图5 气体质量流量随瓶内压力/泄漏时间变化的计算值和测量值比较
Fig.5 Comparison of calculated and measured results for the variation of gas mass flow rate with gas pressure in reservoir or leakage time
图6 火焰总长度随瓶内压力/泄漏时间变化的计算值和测量值比较
Fig.6 Comparison of calculated and measured results for the variation of total flame length with gas pressure in reservoir or leakage time
图8 火焰辐射热通量随泄漏时间/测量距离变化的计算值和测量值比较
Fig.8 Comparison of calculated and measured results for the variation of radiant heat flux with leakage time or measured distance
37 | 王强. 不同环境条件下扩散射流火焰形态特征与推举、吹熄行为研究[D]. 合肥: 中国科学技术大学, 2015. |
Wang Q. Studies on flame shape characteristics and lift-off, blow-out behaviors of jet diffusion flames under different environmental conditions[D]. Hefei: University of Science and Technology of China, 2015. | |
38 | Zhou K B, Qin X L, Wang Z H, et al. Generalization of the radiative fraction correlation for hydrogen and hydrocarbon jet fires in subsonic and chocked flow regimes[J]. International Journal of Hydrogen Energy, 2018, 43(20): 9870-9876. |
39 | Acton M R, Allason D, Creitz L W, et al. Large scale experiments to study hydrogen pipeline fires[C]//Proceedings of 2010 8th International Pipeline Conference. Calgary, Alberta, Canada, 2011: 593-602. |
40 | Jones J C. Hydrocarbon Process Safety: a Text for Students and Professionals [M]. 2nd ed.Dunbeath: Whittles Publishing, 2014. |
41 | Shashi M E. Transmission Pipeline Calculations and Simulations Manual[M]. Boston: Gulf Professional Publishing, 2015. |
42 | Lowesmith B J, Hankinson G. Large scale experiments to study fires following the rupture of high pressure pipelines conveying natural gas and natural gas/hydrogen mixtures[J]. Process Safety and Environmental Protection, 2013, 91(1/2): 101-111. |
43 | 张学学, 李桂馥, 史琳. 热工基础[M]. 3版. 北京: 高等教育出版社, 2015. |
Zhang X X, Li G F, Shi L. Thermal Engineering Foundation[M]. 3rd ed. Beijing: Higher Education Press, 2015. | |
44 | Kessler A, Schreiber A, Wassmer C, et al. Ignition of hydrogen jet fires from high pressure storage[J]. International Journal of Hydrogen Energy, 2014, 39(35): 20554-20559. |
1 | 沈晓波, 章雪凝, 刘海峰. 高压氢气泄漏相关安全问题研究与进展[J]. 化工学报, 2021, 72(3): 1217-1229. |
Shen X B, Zhang X N, Liu H F. Research and progress of safety issues related to high pressure hydrogen leakage[J]. CIESC Journal, 2021, 72(3): 1217-1229. | |
2 | 张博, 万宏, 徐可忠, 等. 世界各国氢能源经济发展举措分析[J]. 国际石油经济, 2017, 25(9): 65-70. |
Zhang B, Wan H, Xu K Z, et al. Hydrogen energy economy development in various countries[J]. International Petroleum Economics, 2017, 25(9): 65-70. | |
3 | 中研普华. 2020—2025年中国氢能源行业发展前景及投资风险预测报告[R]. 深圳: 中研普华管理咨询公司, 2019. |
Zero Power Intelligence. China hydrogen energy industry development prospects and investment forecast report, 2020—2025 [R]. Shenzhen: Zero Power Intelligence Co., Ltd., 2019. | |
4 | Moradi R, Groth K M. Hydrogen storage and delivery: review of the state of the art technologies and risk and reliability analysis[J]. International Journal of Hydrogen Energy, 2019, 44(23): 12254-12269. |
5 | Sarkar A, Banerjee R. Net energy analysis of hydrogen storage options[J]. International Journal of Hydrogen Energy, 2005, 30(8): 867-877. |
6 | Cermelli D, Currò F, Vairo T, et al. Hydrogen jet-fire: accident investigation and implementation of safety measures for the design of a downstream oil plant[J]. Chemical Engineering Transactions, 2018, 67(2018): 415-420. |
7 | Molkov V, Saffers J B. Hydrogen jet flames[J]. International Journal of Hydrogen Energy, 2013, 38(19): 8141-8158. |
8 | 李雪芳. 储氢系统意外氢气泄漏和扩散研究[D]. 北京: 清华大学, 2015. |
Li X F. Dispersion of unintended subsonic and supersonic hydrogen releases from hydrogen storage systems[D]. Beijing: Tsinghua University, 2015. | |
9 | Schefer R W, Houf W G, Williams T C, et al. Characterization of high-pressure, underexpanded hydrogen-jet flames[J]. International Journal of Hydrogen Energy, 2007, 32(12): 2081-2093. |
10 | Birch A D, Brown D R, Dodson M G, et al. The structure and concentration decay of high pressure jets of natural gas[J]. Combustion Science and Technology, 1984, 36(5/6): 249-261. |
11 | Ewan B C R, Moodie K. Structure and velocity measurements in underexpanded jets[J]. Combustion Science and Technology, 1986, 45(5/6): 275-288. |
12 | Yüceil K B, Ötügen M V. Scaling parameters for underexpanded supersonic jets[J]. Physics of Fluids, 2002, 14(12): 4206-4215. |
13 | Mohamed K, Paraschivoiu M. Real gas simulation of hydrogen release from a high-pressure chamber[J]. International Journal of Hydrogen Energy, 2005, 30(8): 903-912. |
14 | Proust C, Jamois D, Studer E. High pressure hydrogen fires[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2367-2373. |
15 | Zhou K B, Wang X Z, Liu M, et al. A theoretical framework for calculating full-scale jet fires induced by high-pressure hydrogen/natural gas transient leakage[J]. International Journal of Hydrogen Energy, 2018, 43(50): 22765-22775. |
16 | Zou Q, Tian Y, Han F. Prediction of state property during hydrogen leaks from high-pressure hydrogen storage systems[J]. International Journal of Hydrogen Energy, 2019, 44(39): 22394-22404. |
17 | Wang Z, Zhou K, Liu M, et al. Lift-off behavior of horizontal subsonic jet flames impinging on a cylindrical surface[C]//Snegirev A, Liu N, Tamanini F, et al. 9th International Seminar on Fire and Explosion Hazards (ISFEH9. |
Saint Petersburg, Russia: Saint-Petersburg Polytechnic University Press, 2019: 831-841. | |
18 | Vanquickenborne L, van Tiggelen A. The stabilization mechanism of lifted diffusion flames[J]. Combustion and Flame, 1966, 10(1): 59-69. |
19 | Peters N, Williams F A. Liftoff characteristics of turbulent jet diffusion flames[J]. AIAA Journal, 1983, 21(3): 423-429. |
20 | Byggstøyl S, Magnussen B F. A model for flame extinction in turbulent flow[M]// Bradbury L J S, Durst F, Launder B E. Turbulent Shear Flow 4. Berlin, Heidelberg: Springer, 1985: 381-395. |
21 | Broadwell J E, Dahm W J A, Mungal M G. Blowout of turbulent diffusion flames[J]. Symposium (International) on Combustion, 1985, 20(1): 303-310. |
22 | Chamberlain G. Developments in design methods for predicting thermal radiation from flares[J]. Chemical Engineering Research and Design, 1987, 65 (4): 299-309. |
23 | Delichatsios M A. Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships[J]. Combustion and Flame, 1993, 92(4): 349-364. |
24 | Palacios A, Muñoz M, Darbra R M, et al. Thermal radiation from vertical jet fires[J]. Fire Safety Journal, 2012, 51: 93-101. |
25 | Raj P K. LNG fires: a review of experimental results, models and hazard prediction challenges[J]. Journal of Hazardous Materials, 2007, 140(3): 444-464. |
26 | Hankinson G, Lowesmith B J. A consideration of methods of determining the radiative characteristics of jet fires[J]. Combustion and Flame, 2012, 159(3): 1165-1177. |
27 | Zhou K B, Jiang J C. Thermal radiation from vertical turbulent jet flame: line source model[J]. Journal of Heat Transfer, 2016, 138(4): 042701. |
28 | Brennan S L, Makarov D V, Molkov V. LES of high pressure hydrogen jet fire[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(3): 353-359. |
29 | 付佳佳, 王昌建, 秦俊, 等. 氢气喷射火的大涡模拟[J]. 燃烧科学与技术, 2013, 19(5): 473-477. |
Fu J J, Wang C J, Qin J, et al. Large eddy simulation of hydrogen jet fire[J]. Journal of Combustion Science and Technology, 2013, 19(5): 473-477. | |
30 | Cirrone D M C, Makarov D, Molkov V. Simulation of thermal hazards from hydrogen under-expanded jet fire[J]. International Journal of Hydrogen Energy, 2019, 44(17): 8886-8892. |
31 | NIST. NIST Chemistry WebBook: NIST Standard Reference Database Number 69[EB/OL]. 2018-10-01. . |
32 | 张剑光. 从制氢与氢能储运角度 看我国氢能产业发展[EB/OL]. 2019-09-04. . |
Zhang J G. Development of China's hydrogen energy industry from the perspective of hydrogen production and hydrogen energy storage and transportation[EB/OL]. 2019-09-04. . | |
33 | Liu J Y, Fan Y Q, Zhou K B, et al. Prediction of flame length of horizontal hydrogen jet fire during high-pressure leakage process[J]. Procedia Engineering, 2018, 211: 471-478. |
34 | Wang Z H, Shui K, You F, et al. Prediction of the failure probability of the overhead power line exposed to large-scale jet fires induced by high-pressure gas leakage[J]. International Journal of Hydrogen Energy, 2021, 46(2): 2413-2431. |
35 | Sonju O K, Hustad J. An experimental study of turbulent jet diffusion flames[M]//Dynamics of Flames and Reactive Systems. New York: AIAA, 1985: 320-339. |
36 | Gautam T. Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air[J]. Combustion Science and Technology, 1984, 41(1/2): 17-29. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[4] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[5] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[6] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[7] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[8] | 李珍宝, 李超, 王虎, 王绍瑞, 黎泉. MPP抑制铝镁合金粉尘爆炸微观机理研究[J]. 化工学报, 2023, 74(8): 3608-3614. |
[9] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[11] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[12] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[13] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[14] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[15] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||