化工学报 ›› 2025, Vol. 76 ›› Issue (3): 1230-1242.DOI: 10.11949/0438-1157.20240567
收稿日期:2024-05-27
修回日期:2024-09-07
出版日期:2025-03-25
发布日期:2025-03-28
通讯作者:
戴文智
作者简介:戴文智(1979—),男,博士,副教授,dwz5470@163.com
基金资助:
Wenzhi DAI(
), Xiongjian SHEN, Xiaobo SONG, Xinle YANG
Received:2024-05-27
Revised:2024-09-07
Online:2025-03-25
Published:2025-03-28
Contact:
Wenzhi DAI
摘要:
为了探究有机朗肯循环(ORC)对环境的影响,进一步完善ORC对环境影响的研究,基于常规㶲环境法、高级㶲环境法和增强㶲环境法对生物质双级蒸发双回热有机朗肯循环(DEDR-ORC)系统进行环境分析,并使用五个评价指标对其结果进行对比分析。研究结果表明:常规㶲环境法和高级㶲环境法得出组件的改进潜力不尽相同,和高级㶲环境法相比,增强㶲环境法分析得出锅炉的改进顺序发生了变化,从第四变为第三,生物质锅炉的总可避免对环境的影响比高级㶲环境法分析结果提高了22.370
中图分类号:
戴文智, 沈雄健, 宋晓博, 杨新乐. 生物质双级蒸发双回热有机朗肯循环系统环境分析[J]. 化工学报, 2025, 76(3): 1230-1242.
Wenzhi DAI, Xiongjian SHEN, Xiaobo SONG, Xinle YANG. Environmental analysis of biomass double-stage evaporation double-regenerative organic Rankine cycle system[J]. CIESC Journal, 2025, 76(3): 1230-1242.
| 燃料成分 | 质量分数/% |
|---|---|
| C | 48.30 |
| H | 7.08 |
| N | 38.50 |
| O | 5.55 |
| S | 0.57 |
| H2O | 8.7 |
表1 生物质燃料的特性[18]
Table 1 Characteristics of biomass fuel[18]
| 燃料成分 | 质量分数/% |
|---|---|
| C | 48.30 |
| H | 7.08 |
| N | 38.50 |
| O | 5.55 |
| S | 0.57 |
| H2O | 8.7 |
| 设备 | 材料质量分数/% | 环境影响/(Pts/kg) | 质量/t | |||
|---|---|---|---|---|---|---|
| 制造 | 运行 | 回收 | 汇总 | |||
| 空气预热器 | 钢/26%;高合金钢/74% | 695.8 | 12.1 | -70 | 637.9 | 138.4 |
| 生物质锅炉 | 高合金钢/70%;低合成钢/30% | 745.5 | 20.0 | -70 | 695.5 | 3889.0 |
| 蒸发器1 | 钢/26%;高合金钢/74% | 695.8 | 12.1 | -70 | 637.9 | 59.6 |
| 蒸发器2 | 钢/26%;高合金钢/74% | 695.8 | 12.1 | -70 | 637.9 | 425.0 |
| 涡轮 | 钢/25%;高合金钢/75% | 704.0 | 11.7 | -70 | 645.7 | 550.0 |
| 冷凝器 | 钢/26%;高合金钢/74% | 695.8 | 12.1 | -70 | 637.9 | 850.0 |
| 回热器 | 钢/26%;高合金钢/74% | 695.8 | 12.1 | -70 | 637.9 | 80.7 |
| 混合回热器 | 钢/26%;高合金钢/74% | 695.8 | 12.1 | -70 | 637.9 | 150.3 |
| 泵1 | 钢/27%;铸铁/64%;铜/8%;铝/1% | 296.6 | 16.9 | -70 | 243.5 | 1.75 |
| 泵2 | 钢/27%;铸铁/64%;铜/8%;铝/1% | 296.6 | 16.9 | -70 | 243.5 | 2.5 |
| 泵3 | 钢/27%;铸铁/64%;铜/8%;铝/1% | 296.6 | 16.9 | -70 | 243.5 | 1.2 |
表2 系统各组件对环境影响值
Table 2 Environmental impact of each system component
| 设备 | 材料质量分数/% | 环境影响/(Pts/kg) | 质量/t | |||
|---|---|---|---|---|---|---|
| 制造 | 运行 | 回收 | 汇总 | |||
| 空气预热器 | 钢/26%;高合金钢/74% | 695.8 | 12.1 | -70 | 637.9 | 138.4 |
| 生物质锅炉 | 高合金钢/70%;低合成钢/30% | 745.5 | 20.0 | -70 | 695.5 | 3889.0 |
| 蒸发器1 | 钢/26%;高合金钢/74% | 695.8 | 12.1 | -70 | 637.9 | 59.6 |
| 蒸发器2 | 钢/26%;高合金钢/74% | 695.8 | 12.1 | -70 | 637.9 | 425.0 |
| 涡轮 | 钢/25%;高合金钢/75% | 704.0 | 11.7 | -70 | 645.7 | 550.0 |
| 冷凝器 | 钢/26%;高合金钢/74% | 695.8 | 12.1 | -70 | 637.9 | 850.0 |
| 回热器 | 钢/26%;高合金钢/74% | 695.8 | 12.1 | -70 | 637.9 | 80.7 |
| 混合回热器 | 钢/26%;高合金钢/74% | 695.8 | 12.1 | -70 | 637.9 | 150.3 |
| 泵1 | 钢/27%;铸铁/64%;铜/8%;铝/1% | 296.6 | 16.9 | -70 | 243.5 | 1.75 |
| 泵2 | 钢/27%;铸铁/64%;铜/8%;铝/1% | 296.6 | 16.9 | -70 | 243.5 | 2.5 |
| 泵3 | 钢/27%;铸铁/64%;铜/8%;铝/1% | 296.6 | 16.9 | -70 | 243.5 | 1.2 |
| 设备 | 平衡方程 | 辅助方程 |
|---|---|---|
| 空气预热器 | ||
| 生物质锅炉 | ||
| 蒸发器1 | ||
| 蒸发器2 | ||
| 涡轮 | ||
| 冷凝器 | ||
| 回热器 | ||
| 混合回热器 | ||
| 泵1 | ||
| 泵2 | ||
| 泵3 |
表3 组件环境㶲影响平衡方程和辅助方程
Table 3 Component environmental exergy balance equation and auxiliary equations
| 设备 | 平衡方程 | 辅助方程 |
|---|---|---|
| 空气预热器 | ||
| 生物质锅炉 | ||
| 蒸发器1 | ||
| 蒸发器2 | ||
| 涡轮 | ||
| 冷凝器 | ||
| 回热器 | ||
| 混合回热器 | ||
| 泵1 | ||
| 泵2 | ||
| 泵3 |
| 评价指标 | 常规㶲环境法 | 增强㶲环境法 |
|---|---|---|
| 环境总影响 | ||
| 㶲损率 | ||
| 环境影响绩效 | ||
| 环境㶲影响因子 | ||
| 净输出功对环境影响 |
表4 系统环境影响评价指标[27-28]
Table 4 System environmental impact assessment indicators[27-28]
| 评价指标 | 常规㶲环境法 | 增强㶲环境法 |
|---|---|---|
| 环境总影响 | ||
| 㶲损率 | ||
| 环境影响绩效 | ||
| 环境㶲影响因子 | ||
| 净输出功对环境影响 |
| 参数 | 数值 |
|---|---|
| 热源温度 | 448.15[ |
| 冷却水入口温度 | 298.15 |
| 冷却水出口温度 | 308.15 |
| 蒸发器1蒸发温度 | 415.15 |
| 蒸发器2蒸发温度 | 400.15 |
| 环境温度 | 298.15 |
| 环境压力 | 101.3 |
| 生物质锅炉排气温度 | 439.65[ |
| 有机流体 | R245fa |
| 锅炉输入热负荷 | 3000 |
| 燃料的低热值 | 17200[ |
表5 系统恒定参数
Table 5 System constant parameters
| 参数 | 数值 |
|---|---|
| 热源温度 | 448.15[ |
| 冷却水入口温度 | 298.15 |
| 冷却水出口温度 | 308.15 |
| 蒸发器1蒸发温度 | 415.15 |
| 蒸发器2蒸发温度 | 400.15 |
| 环境温度 | 298.15 |
| 环境压力 | 101.3 |
| 生物质锅炉排气温度 | 439.65[ |
| 有机流体 | R245fa |
| 锅炉输入热负荷 | 3000 |
| 燃料的低热值 | 17200[ |
| 组件 | 指标参数 | 实际 | 理想 | 不可避免 |
|---|---|---|---|---|
| 空气预热器 | 5 | 0 | 0.5 | |
| 蒸发器 | 5 | 0 | 0.5 | |
| 冷凝器 | 5 | 0 | 0.5 | |
| 锅炉 | 80 | 100 | 90 | |
| 涡轮 | 75 | 100 | 90 | |
| 回热器 | 80 | 100 | 90 | |
| 混合回热器 | 80 | 100 | 90 | |
| 泵 | 70 | 100 | 90 |
表6 循环运行工况[30-31]
Table 6 Cyclic operating conditions[30-31]
| 组件 | 指标参数 | 实际 | 理想 | 不可避免 |
|---|---|---|---|---|
| 空气预热器 | 5 | 0 | 0.5 | |
| 蒸发器 | 5 | 0 | 0.5 | |
| 冷凝器 | 5 | 0 | 0.5 | |
| 锅炉 | 80 | 100 | 90 | |
| 涡轮 | 75 | 100 | 90 | |
| 回热器 | 80 | 100 | 90 | |
| 混合回热器 | 80 | 100 | 90 | |
| 泵 | 70 | 100 | 90 |
| 参数 | Pentane | R134a | ||
|---|---|---|---|---|
| 文献[ | 本文 | 文献[ | 本文 | |
| 423.15 | 423.15 | 393.15 | 393.15 | |
| 293.15 | 293.15 | 297.13 | 297.15 | |
| 380.15 | 180.15 | 340.90 | 340.90 | |
| 311.25 | 311.25 | 303.15 | 303.15 | |
| 6.3 | 6.3 | 10 | ||
| 275.15 | 275.15 | 283.15 | 283.15 | |
| 6.93 | 6.89 | 20.00 | 20.12 | |
| 1.09 | 1.07 | 7.70 | 7.67 | |
| 11.69 | 11.73 | 7.48 | 7.40 | |
表7 模型验证数据参数
Table 7 Model validation data parameters
| 参数 | Pentane | R134a | ||
|---|---|---|---|---|
| 文献[ | 本文 | 文献[ | 本文 | |
| 423.15 | 423.15 | 393.15 | 393.15 | |
| 293.15 | 293.15 | 297.13 | 297.15 | |
| 380.15 | 180.15 | 340.90 | 340.90 | |
| 311.25 | 311.25 | 303.15 | 303.15 | |
| 6.3 | 6.3 | 10 | ||
| 275.15 | 275.15 | 283.15 | 283.15 | |
| 6.93 | 6.89 | 20.00 | 20.12 | |
| 1.09 | 1.07 | 7.70 | 7.67 | |
| 11.69 | 11.73 | 7.48 | 7.40 | |
| 设备 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 空气预热器 | 37.42 | 18.24 | 19.18 | 48.74 | 0.217 | 0.475 | 14.98 | 0.552 | 15.53 | |
| 锅炉 | 3346.20 | 1485.70 | 1860.50 | 44.40 | 0.218 | 0.332 | 1456.83 | 16.903 | 184.88 | 1658.62 |
| 蒸发器1 | 404.39 | 373.99 | 30.40 | 92.48 | 0.348 | 0.377 | 38.09 | 0.238 | 38.33 | |
| 蒸发器2 | 247.13 | 235.47 | 11.66 | 95.28 | 0.348 | 0.373 | 14.61 | 1.694 | 16.30 | |
| 涡轮 | 1356.04 | 1065.50 | 290.54 | 78.57 | 0.228 | 0.290 | 238.50 | 2.219 | 240.72 | |
| 冷凝器 | 267.40 | 91.73 | 175.67 | 34.30 | 2.854 | 8.336 | 1804.75 | 3.388 | 1808.14 | |
| 回热器 | 38.58 | 20.01 | 18.57 | 51.87 | 0.076 | 0.162 | 5.05 | 0.322 | 5.37 | |
| 混合回热器 | 11126.56 | 11041.83 | 84.73 | 99.24 | 0.051 | 0.053 | 15.56 | 0.599 | 16.15 | |
| 泵1 | 2.59 | 1.85 | 0.74 | 71.44 | 0.291 | 0.409 | 0.78 | 0.003 | 0.78 | |
| 泵2 | 5.69 | 4.29 | 1.40 | 75.51 | 0.291 | 0.386 | 1.46 | 0.004 | 1.46 | |
| 泵3 | 0.93 | 0.72 | 0.21 | 77.65 | 0.291 | 0.377 | 0.22 | 0.002 | 0.22 |
表8 常规㶲环境法分析结果
Table 8 Conventional exergy analysis results
| 设备 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 空气预热器 | 37.42 | 18.24 | 19.18 | 48.74 | 0.217 | 0.475 | 14.98 | 0.552 | 15.53 | |
| 锅炉 | 3346.20 | 1485.70 | 1860.50 | 44.40 | 0.218 | 0.332 | 1456.83 | 16.903 | 184.88 | 1658.62 |
| 蒸发器1 | 404.39 | 373.99 | 30.40 | 92.48 | 0.348 | 0.377 | 38.09 | 0.238 | 38.33 | |
| 蒸发器2 | 247.13 | 235.47 | 11.66 | 95.28 | 0.348 | 0.373 | 14.61 | 1.694 | 16.30 | |
| 涡轮 | 1356.04 | 1065.50 | 290.54 | 78.57 | 0.228 | 0.290 | 238.50 | 2.219 | 240.72 | |
| 冷凝器 | 267.40 | 91.73 | 175.67 | 34.30 | 2.854 | 8.336 | 1804.75 | 3.388 | 1808.14 | |
| 回热器 | 38.58 | 20.01 | 18.57 | 51.87 | 0.076 | 0.162 | 5.05 | 0.322 | 5.37 | |
| 混合回热器 | 11126.56 | 11041.83 | 84.73 | 99.24 | 0.051 | 0.053 | 15.56 | 0.599 | 16.15 | |
| 泵1 | 2.59 | 1.85 | 0.74 | 71.44 | 0.291 | 0.409 | 0.78 | 0.003 | 0.78 | |
| 泵2 | 5.69 | 4.29 | 1.40 | 75.51 | 0.291 | 0.386 | 1.46 | 0.004 | 1.46 | |
| 泵3 | 0.93 | 0.72 | 0.21 | 77.65 | 0.291 | 0.377 | 0.22 | 0.002 | 0.22 |
| 组件 | ||||||||
|---|---|---|---|---|---|---|---|---|
| 空气预热器 | 15.13 | -0.15 | 14.60 | 0.37 | 13.29 | 1.32 | 1.84 | -1.47 |
| 生物质锅炉 | 1449.92 | 6.91 | 1395.37 | 61.46 | 1333.23 | 62.15 | 116.70 | -55.24 |
| 蒸发器1 | 42.76 | -4.67 | 41.30 | -3.21 | 37.15 | 4.15 | 5.61 | -8.83 |
| 蒸发器2 | 7.28 | 7.33 | 2.68 | 11.93 | 2.44 | 0.25 | 4.85 | 7.08 |
| 涡轮 | 124.52 | 113.98 | 51.76 | 186.74 | 43.27 | 8.49 | 81.25 | 105.49 |
| 冷凝器 | 728.94 | 1075.81 | 415.00 | 1389.75 | 407.09 | 7.91 | 321.84 | 1067.91 |
| 回热器 | 0.93 | 4.12 | 0.75 | 4.30 | 0.59 | 0.16 | 0.34 | 3.96 |
| 混合回热器 | 14.35 | 1.20 | 9.04 | 6.52 | 8.94 | 0.10 | 5.41 | 1.11 |
| 泵1 | 3.69 | -2.92 | 0.96 | -0.19 | 0.97 | -0.01 | 2.72 | -2.91 |
| 泵2 | 6.78 | -5.32 | 1.77 | -0.31 | 1.86 | -0.09 | 4.92 | -5.23 |
| 泵3 | 3.32 | -3.10 | 0.86 | -0.64 | 0.93 | -0.07 | 2.39 | -3.03 |
表9 高级㶲环境法分析结果
Table 9 Advanced exergy analysis results
| 组件 | ||||||||
|---|---|---|---|---|---|---|---|---|
| 空气预热器 | 15.13 | -0.15 | 14.60 | 0.37 | 13.29 | 1.32 | 1.84 | -1.47 |
| 生物质锅炉 | 1449.92 | 6.91 | 1395.37 | 61.46 | 1333.23 | 62.15 | 116.70 | -55.24 |
| 蒸发器1 | 42.76 | -4.67 | 41.30 | -3.21 | 37.15 | 4.15 | 5.61 | -8.83 |
| 蒸发器2 | 7.28 | 7.33 | 2.68 | 11.93 | 2.44 | 0.25 | 4.85 | 7.08 |
| 涡轮 | 124.52 | 113.98 | 51.76 | 186.74 | 43.27 | 8.49 | 81.25 | 105.49 |
| 冷凝器 | 728.94 | 1075.81 | 415.00 | 1389.75 | 407.09 | 7.91 | 321.84 | 1067.91 |
| 回热器 | 0.93 | 4.12 | 0.75 | 4.30 | 0.59 | 0.16 | 0.34 | 3.96 |
| 混合回热器 | 14.35 | 1.20 | 9.04 | 6.52 | 8.94 | 0.10 | 5.41 | 1.11 |
| 泵1 | 3.69 | -2.92 | 0.96 | -0.19 | 0.97 | -0.01 | 2.72 | -2.91 |
| 泵2 | 6.78 | -5.32 | 1.77 | -0.31 | 1.86 | -0.09 | 4.92 | -5.23 |
| 泵3 | 3.32 | -3.10 | 0.86 | -0.64 | 0.93 | -0.07 | 2.39 | -3.03 |
| 组件k | 组件r | (Pts/h) | (Pts/h) | 组件k | 组件r | (Pts/h) | (Pts/h) | (Pts/h) | |
|---|---|---|---|---|---|---|---|---|---|
| 空气预热器 | 生物质锅炉 | -0.152 | -0.041 | -0.112 | 回热器 | 蒸发器1 | 0.118 | 0.072 | 0.046 |
| 生物质锅炉 | 空气预热器 | 6.908 | 22.554 | -15.646 | 蒸发器2 | -0.071 | -0.044 | -0.028 | |
| 蒸发器1 | 蒸发器2 | 2.720 | 0.387 | 2.333 | 涡轮 | 2.223 | 4.758 | -2.535 | |
| 泵2 | 0.148 | 0.021 | 0.127 | 冷凝器 | 2.003 | 4.373 | -2.370 | ||
| 泵3 | 1.286 | 1.676 | -0.390 | 泵1 | -0.016 | -0.027 | 0.012 | ||
| 蒸发器2 | 蒸发器1 | 7.924 | 8.047 | -0.124 | 泵2 | 0.003 | 0.002 | 0.001 | |
| 泵2 | -0.029 | -0.019 | -0.010 | 泵3 | 0.004 | 0.003 | 0.002 | ||
| 泵3 | 0.249 | 0.251 | -0.002 | 混合回热器 | 蒸发器1 | 2.046 | 0.806 | 1.240 | |
| 涡轮 | 蒸发器1 | 16.856 | 14.663 | 2.194 | 蒸发器2 | -1.235 | -0.486 | -0.748 | |
| 蒸发器2 | -10.173 | -8.849 | -1.324 | 涡轮 | 0.554 | 0.579 | -0.025 | ||
| 冷凝器 | -9.037 | -8.112 | -0.924 | 冷凝器 | -0.826 | -0.867 | 0.041 | ||
| 泵2 | 0.388 | 0.412 | -0.024 | 回热器 | -1.301 | -1.359 | 0.058 | ||
| 泵3 | 0.594 | 0.665 | -0.070 | 泵2 | 0.045 | 0.018 | 0.027 | ||
| 冷凝器 | 蒸发器1 | 103.899 | 134.004 | -30.105 | 泵3 | 0.072 | 0.028 | 0.044 | |
| 蒸发器2 | -62.705 | -80.874 | 18.169 | 泵1 | 蒸发器1 | 0.526 | 0.546 | -0.020 | |
| 涡轮 | 46.232 | 59.627 | -13.396 | 蒸发器2 | -0.317 | -0.329 | 0.012 | ||
| 泵1 | 1.136 | 1.465 | -0.329 | 冷凝器 | -0.188 | -0.225 | 0.036 | ||
| 泵2 | 2.264 | 2.920 | -0.656 | 泵2 | 0.011 | 0.012 | 0.000 | ||
| 泵3 | 3.663 | 4.724 | -1.061 | 泵3 | 0.019 | 0.019 | -0.001 | ||
| 泵2 | 蒸发器1 | 0.974 | 0.938 | 0.036 | 泵3 | 蒸发器1 | -0.351 | -0.328 | -0.023 |
| 蒸发器2 | -0.590 | -0.568 | -0.022 | 蒸发器2 | 0.211 | 0.197 | 0.014 | ||
| 泵3 | 0.034 | 0.033 | 0.001 | 泵2 | 0.011 | 0.011 | 0.001 |
表10 外源㶲损失对环境影响组件之间作用关系
Table 10 The relationship between the components of exogenous exergy loss and environmental impact
| 组件k | 组件r | (Pts/h) | (Pts/h) | 组件k | 组件r | (Pts/h) | (Pts/h) | (Pts/h) | |
|---|---|---|---|---|---|---|---|---|---|
| 空气预热器 | 生物质锅炉 | -0.152 | -0.041 | -0.112 | 回热器 | 蒸发器1 | 0.118 | 0.072 | 0.046 |
| 生物质锅炉 | 空气预热器 | 6.908 | 22.554 | -15.646 | 蒸发器2 | -0.071 | -0.044 | -0.028 | |
| 蒸发器1 | 蒸发器2 | 2.720 | 0.387 | 2.333 | 涡轮 | 2.223 | 4.758 | -2.535 | |
| 泵2 | 0.148 | 0.021 | 0.127 | 冷凝器 | 2.003 | 4.373 | -2.370 | ||
| 泵3 | 1.286 | 1.676 | -0.390 | 泵1 | -0.016 | -0.027 | 0.012 | ||
| 蒸发器2 | 蒸发器1 | 7.924 | 8.047 | -0.124 | 泵2 | 0.003 | 0.002 | 0.001 | |
| 泵2 | -0.029 | -0.019 | -0.010 | 泵3 | 0.004 | 0.003 | 0.002 | ||
| 泵3 | 0.249 | 0.251 | -0.002 | 混合回热器 | 蒸发器1 | 2.046 | 0.806 | 1.240 | |
| 涡轮 | 蒸发器1 | 16.856 | 14.663 | 2.194 | 蒸发器2 | -1.235 | -0.486 | -0.748 | |
| 蒸发器2 | -10.173 | -8.849 | -1.324 | 涡轮 | 0.554 | 0.579 | -0.025 | ||
| 冷凝器 | -9.037 | -8.112 | -0.924 | 冷凝器 | -0.826 | -0.867 | 0.041 | ||
| 泵2 | 0.388 | 0.412 | -0.024 | 回热器 | -1.301 | -1.359 | 0.058 | ||
| 泵3 | 0.594 | 0.665 | -0.070 | 泵2 | 0.045 | 0.018 | 0.027 | ||
| 冷凝器 | 蒸发器1 | 103.899 | 134.004 | -30.105 | 泵3 | 0.072 | 0.028 | 0.044 | |
| 蒸发器2 | -62.705 | -80.874 | 18.169 | 泵1 | 蒸发器1 | 0.526 | 0.546 | -0.020 | |
| 涡轮 | 46.232 | 59.627 | -13.396 | 蒸发器2 | -0.317 | -0.329 | 0.012 | ||
| 泵1 | 1.136 | 1.465 | -0.329 | 冷凝器 | -0.188 | -0.225 | 0.036 | ||
| 泵2 | 2.264 | 2.920 | -0.656 | 泵2 | 0.011 | 0.012 | 0.000 | ||
| 泵3 | 3.663 | 4.724 | -1.061 | 泵3 | 0.019 | 0.019 | -0.001 | ||
| 泵2 | 蒸发器1 | 0.974 | 0.938 | 0.036 | 泵3 | 蒸发器1 | -0.351 | -0.328 | -0.023 |
| 蒸发器2 | -0.590 | -0.568 | -0.022 | 蒸发器2 | 0.211 | 0.197 | 0.014 | ||
| 泵3 | 0.034 | 0.033 | 0.001 | 泵2 | 0.011 | 0.011 | 0.001 |
| 设备 | |||
|---|---|---|---|
| 空气预热器 | 1.843 | -0.041 | 1.802 |
| 生物质锅炉 | 116.695 | 22.554 | 139.249 |
| 蒸发器1 | 5.613 | 158.747 | 164.360 |
| 蒸发器2 | 4.846 | -90.567 | -85.721 |
| 涡轮 | 81.247 | 64.964 | 146.211 |
| 冷凝器 | 321.843 | -4.830 | 317.013 |
| 回热器 | 0.237 | -1.359 | -1.122 |
| 混合回热器 | 5.411 | 0.000 | 5.411 |
| 泵1 | 2.725 | 1.438 | 4.163 |
| 泵2 | 4.919 | 3.376 | 8.295 |
| 泵3 | 2.389 | 7.398 | 9.787 |
表11 高级㶲环境法组件可避免的环境影响汇总
Table 11 Summary of avoidable environmental impacts of advanced exergy components
| 设备 | |||
|---|---|---|---|
| 空气预热器 | 1.843 | -0.041 | 1.802 |
| 生物质锅炉 | 116.695 | 22.554 | 139.249 |
| 蒸发器1 | 5.613 | 158.747 | 164.360 |
| 蒸发器2 | 4.846 | -90.567 | -85.721 |
| 涡轮 | 81.247 | 64.964 | 146.211 |
| 冷凝器 | 321.843 | -4.830 | 317.013 |
| 回热器 | 0.237 | -1.359 | -1.122 |
| 混合回热器 | 5.411 | 0.000 | 5.411 |
| 泵1 | 2.725 | 1.438 | 4.163 |
| 泵2 | 4.919 | 3.376 | 8.295 |
| 泵3 | 2.389 | 7.398 | 9.787 |
| 设备 | |||
|---|---|---|---|
| 空气预热器 | 1.948 | -0.055 | 1.893 |
| 生物质锅炉 | 139.066 | 22.553 | 161.619 |
| 蒸发器1 | 5.637 | 158.774 | 164.411 |
| 蒸发器2 | 4.953 | -90.581 | -85.628 |
| 涡轮 | 81.282 | 64.966 | 146.248 |
| 冷凝器 | 321.886 | -4.834 | 317.052 |
| 回热器 | 0.250 | -1.359 | -1.109 |
| 混合回热器 | 5.497 | 0 | 5.497 |
| 泵1 | 2.735 | 1.438 | 4.173 |
| 泵2 | 4.933 | 3.348 | 8.281 |
| 泵3 | 2.416 | 7.400 | 9.816 |
表12 增强㶲环境法组件的可避免对环境总影响的结果
Table 12 Enhanced total avoided environmental impact results of exergy law components
| 设备 | |||
|---|---|---|---|
| 空气预热器 | 1.948 | -0.055 | 1.893 |
| 生物质锅炉 | 139.066 | 22.553 | 161.619 |
| 蒸发器1 | 5.637 | 158.774 | 164.411 |
| 蒸发器2 | 4.953 | -90.581 | -85.628 |
| 涡轮 | 81.282 | 64.966 | 146.248 |
| 冷凝器 | 321.886 | -4.834 | 317.052 |
| 回热器 | 0.250 | -1.359 | -1.109 |
| 混合回热器 | 5.497 | 0 | 5.497 |
| 泵1 | 2.735 | 1.438 | 4.173 |
| 泵2 | 4.933 | 3.348 | 8.281 |
| 泵3 | 2.416 | 7.400 | 9.816 |
| 1 | Ren J, Qian Z Q, Fei C G, et al. Thermodynamic, exergoeconomic, and exergoenvironmental analysis of a combined cooling and power system for natural gas-biomass dual fuel gas turbine waste heat recovery[J]. Energy, 2023, 269: 126676. |
| 2 | 闫沛伟, 张曼铮, 肖猛, 等. 地热能有机朗肯循环系统控制策略研究[J]. 化工学报, 2023, 74(12): 4810-4819. |
| Yan P W, Zhang M Z, Xiao M, et al. Study on the control strategy of a geothermal organic Rankine cycle system[J]. CIESC Journal, 2023, 74(12): 4810-4819. | |
| 3 | Feng J S, Cheng X N, Yan Y R, et al. Thermodynamic and thermo-economic analysis, performance comparison and parameter optimization of basic and regenerative organic Rankine cycles for waste heat recovery[J]. Case Studies in Thermal Engineering, 2023, 52: 103816. |
| 4 | Yang M H. Optimizations of the waste heat recovery system for a large marine diesel engine based on transcritical Rankine cycle[J]. Energy, 2016, 113: 1109-1124. |
| 5 | Budovich L S. Energy, exergy analysis in a hybrid power and hydrogen production system using biomass and organic Rankine cycle[J]. International Journal of Thermofluids, 2024, 21: 100584. |
| 6 | Qi X R, Yang C S, Huang M Y, et al. Conventional and advanced exergy-exergoeconomic-exergoenvironmental analyses of an organic Rankine cycle integrated with solar and biomass energy sources[J]. Energy, 2024, 288: 129657. |
| 7 | Wen L H, Liu H Y, Heydarian D. Multi-objective grey wolf optimization of four different geothermal flash-organic Rankine power cycles[J]. Process Safety and Environmental Protection, 2023, 180: 223-241. |
| 8 | 葛众, 熊肖, 李健, 等. 基于LCA的有机朗肯循环技术环保性能研究综述[J]. 工程热物理学报, 2024, 45(8): 2262-2276. |
| Ge Z, Xiong X, Li J, et al. A review on full life cycle research of organic Rankine cycle technology[J]. Journal of Engineering Thermophysics, 2024, 45(8): 2262-2276. | |
| 9 | 董志坚, 叶学民, 宋睿哲, 等. 集成ORC的太阳能辅助燃煤碳捕集发电系统全生命周期分析[J]. 动力工程学报, 2022, 42(7): 647-656. |
| Dong Z J, Ye X M, Song R Z, et al. Life cycle assessment of coal-fired solar-assisted carbon capture power generation system integrated with ORC[J]. Journal of Chinese Society of Power Engineering, 2022, 42(7): 647-656. | |
| 10 | 王华荣. 有机朗肯循环多目标参数优化及经济环境影响评价[D]. 北京: 华北电力大学, 2017. |
| Wang H R. Multi-objective parameter optimization and economic and environmental impact assessment of organic Rankine cycle[D]. Beijing: North China Electric Power University, 2017. | |
| 11 | Heberle F, Schifflechner C, Brüggemann D. Life cycle assessment of organic Rankine cycles for geothermal power generation considering low-GWP working fluids[J]. Geothermics, 2016, 64: 392-400. |
| 12 | Peng P, Yuan Y B, Ge H, et al. Thermodynamic and life cycle assessment analysis of polymer-containing oily sludge supercritical water gasification system combined with organic Rankine cycle[J]. Energy, 2024, 305: 132359. |
| 13 | Akbulut U, Utlu Z, Kincay O. Exergoenvironmental and exergoeconomic analyses of a vertical type ground source heat pump integrated wall cooling system[J]. Applied Thermal Engineering, 2016, 102: 904-921. |
| 14 | Tsatsaronis G, Morosuk T. A general exergy-based method for combining a cost analysis with an environmental impact analysis(part Ⅰ):Theoretical development [C]//ASME 2008 International Mechanical Engineering Congress and Exposition. Boston, Massachusetts, USA, 2009: 453-462. |
| 15 | Tsatsaronis G, Morosuk T. A general exergy-based method for combining a cost analysis with an environmental impact analysis(part Ⅱ):Application to a cogeneration system[C]//ASME 2008 International Mechanical Engineering Congress and Exposition, Boston, Massachusetts, USA, 2009: 463-469. |
| 16 | Boyaghchi F A, Chavoshi M, Sabeti V. Multi-generation system incorporated with PEM electrolyzer and dual ORC based on biomass gasification waste heat recovery: exergetic, economic and environmental impact optimizations[J]. Energy, 2018, 145: 38-51. |
| 17 | Ptasinski K J, Prins M J, Pierik A. Exergetic evaluation of biomass gasification[J]. Energy, 2007, 32(4): 568-574. |
| 18 | Al-Sulaiman F A, Dincer I, Hamdullahpur F. Energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle[J]. Energy, 2012, 45(1): 975-985. |
| 19 | Zhu Y L, Li W Y, Li J, et al. Thermodynamic analysis and economic assessment of biomass-fired organic Rankine cycle combined heat and power system integrated with CO2 capture[J]. Energy Conversion and Management, 2020, 204: 112310. |
| 20 | 何超, 罗志云, 宋光武, 等. 天津市典型生物质固体燃料锅炉NO、CO排放研究[J]. 环境工程, 2017, 35(4): 86-90. |
| He C, Luo Z Y, Song G W, et al. Research on the combustion emission of NO and CO from typical biomass soild fuel boilers in Tianjin[J]. Environmental Engineering, 2017, 35(4): 86-90. | |
| 21 | Başoğul Y. Environmental assessment of a binary geothermal sourced power plant accompanied by exergy analysis[J]. Energy Conversion and Management, 2019, 195: 492-501. |
| 22 | Cavalcanti E J C. Exergoeconomic and exergoenvironmental analyses of an integrated solar combined cycle system[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 507-519. |
| 23 | Mousavi Rabeti S A, Khoshgoftar Manesh M H, Amidpour M. An innovative optimal 4E solar-biomass waste polygeneration system for power, methanol, and freshwater production[J]. Journal of Cleaner Production, 2023, 412: 137267. |
| 24 | Mehrabadi Z K, Boyaghchi F A. Exergoeconomic and exergoenvironmental analyses and optimization of a new low-CO2 emission energy system based on gasification-solid oxide fuel cell to produce power and freshwater using various fuels[J]. Sustainable Production and Consumption, 2021, 26: 782-804. |
| 25 | Meyer L, Tsatsaronis G, Buchgeister J, et al. Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems[J]. Energy, 2009, 34(1): 75-89. |
| 26 | Liu X, Yu K, Wan X, et al. Conventional and advanced exergy analyses of transcritical CO2 ejector refrigeration system equipped with thermoelectric subcooler[J]. Energy Reports, 2021, 7: 1765-1779. |
| 27 | Casas-Ledón Y, Spaudo F, Arteaga-Pérez L E. Exergoenvironmental analysis of a waste-based integrated combined cycle (WICC) for heat and power production[J]. Journal of Cleaner Production, 2017, 164: 187-197. |
| 28 | Hepbasli A, Keçebaş A. A comparative study on conventional and advanced exergetic analyses of geothermal district heating systems based on actual operational data[J]. Energy and Buildings, 2013, 61: 193-201. |
| 29 | 王毅, 杜金宇, 张全国, 等. 生物质锅炉多效烟气净化装置设计与性能研究[J]. 农业机械学报, 2018, 49(2): 313-318. |
| Wang Y, Du J Y, Zhang Q G, et al. Research on multiple purification device design and performance of biomass boiler flue gas[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 313-318. | |
| 30 | Zeng J Q, Li Z Y, Peng Z Y. Advanced exergy analysis of solar absorption-subcooled compression hybrid cooling system[J]. International Journal of Green Energy, 2022, 19(3): 219-241. |
| 31 | Tian Y N, Zhang T, Xie N N, et al. Conventional and advanced exergy analysis of large-scale adiabatic compressed air energy storage system[J]. Journal of Energy Storage, 2023, 57: 106165. |
| 32 | Kazemi N, Samadi F. Thermodynamic, economic and thermo-economic optimization of a new proposed organic Rankine cycle for energy production from geothermal resources[J]. Energy Conversion and Management, 2016, 121: 391-401. |
| 33 | Rayegan R, Tao Y X. A procedure to select working fluids for solar organic Rankine cycles (ORCs)[J]. Renewable Energy, 2011, 36(2): 659-670. |
| [1] | 刘彦贝, 王若名, 刘娟, Raza Taimoor, 陆玉正, Raza Rizwan, 朱斌, 李松波, 安胜利, 云斯宁. CeO2@La0.6Sr0.4Co0.2Fe0.8O3-δ 电解质的制备及半导体离子燃料电池性能研究[J]. 化工学报, 2025, 76(3): 1353-1362. |
| [2] | 齐珂, 王迪, 谢喆, 陈东升, 周云龙, 孙灵芳. 考虑多物理场耦合特性的固体氧化物燃料电池瞬态特性研究[J]. 化工学报, 2025, 76(3): 1264-1274. |
| [3] | 姚国家, 王志, 苏昂, 冯东阁, 唐宏, 孙灵芳. 空气系数对煤粉预热解燃烧特性的影响分析[J]. 化工学报, 2025, 76(3): 1243-1252. |
| [4] | 翟紫航, 蒋杰, 李锦锦, 赵玲, 奚桢浩. 基于2,5-呋喃二甲酸的三元无规共聚酯PBSF的制备与性能[J]. 化工学报, 2025, 76(2): 868-878. |
| [5] | 杨晋宁, 王卫凡, 徐冬, 刘毅, 翁小涵, 原野, 王志. 工业烟道气碳捕集膜技术放大研究进展[J]. 化工学报, 2025, 76(2): 504-518. |
| [6] | 韩启沃, 刘永峰, 裴普成, 张璐, 姚圣卓. 工作温度对PEMFC水分布、质子传输及性能影响分析[J]. 化工学报, 2025, 76(1): 374-384. |
| [7] | 陈森洋, 靳蒲航, 谭志明, 谢公南. 质子交换膜燃料电池中蛇形流道液滴运动数值仿真研究[J]. 化工学报, 2024, 75(S1): 183-194. |
| [8] | 赵振刚, 周梦瑶, 金典, 张大骋. 基于泡沫碳扩散层的直接甲醇燃料电池改性研究[J]. 化工学报, 2024, 75(S1): 259-266. |
| [9] | 吴学红, 韦新, 侯加文, 吕财, 刘勇, 刘鹤, 常志娟. 热解法制备碳纳米管及其在散热涂层中的应用研究[J]. 化工学报, 2024, 75(9): 3360-3368. |
| [10] | 卢昕悦, 陈锐莹, 姜夏雪, 梁海瑞, 高歌, 叶正芳. 耦合LNG冷能的液态空气储能系统和液态CO2储能系统对比分析[J]. 化工学报, 2024, 75(9): 3297-3309. |
| [11] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
| [12] | 朱楼, 宋杨凡, 王猛, 施睿鹏, 厉彦民, 陈鸿伟, 刘卓, 魏翔. 中心脉冲气-液-固循环流化床微生物燃料电池产电特性[J]. 化工学报, 2024, 75(8): 2991-3001. |
| [13] | 豆少军, 郝亮. PEMFC催化层耦合气体电荷传输过程的介观模拟[J]. 化工学报, 2024, 75(8): 3002-3010. |
| [14] | 王倩倩, 李冰, 郑伟波, 崔国民, 赵兵涛, 明平文. 氢燃料电池局部动态特征三维模型[J]. 化工学报, 2024, 75(8): 2812-2820. |
| [15] | 黄晓峰, 刘朝晖, 杨帆. 高密度碳氢燃料JP-10流动换热及热裂解结焦实验研究[J]. 化工学报, 2024, 75(8): 2917-2928. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号