| 1 |
Kantarci N, Borak F, Ulgen K O. Bubble column reactors[J]. Process Biochemistry, 2005, 40(7): 2263-2283.
|
| 2 |
Cheng D, Cheng J C, Li X Y, et al. Experimental study on gas-liquid-liquid macro-mixing in a stirred tank[J]. Chemical Engineering Science, 2012, 75: 256-266.
|
| 3 |
张华海, 王铁峰. CFD-PBM耦合模型模拟气液鼓泡床的通用性研究[J]. 化工学报, 2019, 70(2): 487-495.
|
|
Zhang H H, Wang T F. Generality of CFD-PBM coupled model for simulations of gas-liquid bubble column[J]. CIESC Journal, 2019, 70(2): 487-495.
|
| 4 |
Zhang X B, Luo Z H. Local gas-liquid slip velocity distribution in bubble columns and its relationship with heat transfer[J]. AIChE Journal, 2021, 67(1): e17032.
|
| 5 |
Cai Y B, Yang Z S, Jin Y J, et al. Measurement of droplet coalescence in a mixing tank[J]. AIChE Journal, 2024, 70(4): e18282.
|
| 6 |
刘会影, 贾胜坤, 罗祎青, 等. 气相进料对隔板精馏塔优化设计的影响[J]. 化工学报, 2022, 73(7): 3090-3098.
|
|
Liu H Y, Jia S K, Luo Y Q, et al. Influence of vapor feed on optimal design of dividing wall column[J]. CIESC Journal, 2022, 73(7): 3090-3098.
|
| 7 |
Oolman T O, Blanch H W. Bubble coalescence in stagnant liquids[J]. Chemical Engineering Communications, 1986, 43(4/5/6): 237-261.
|
| 8 |
Chesters A K. The applicability of dynamic-similarity criteria to isothermal, liquid-gas, two-phase flows without mass transfer[J]. International Journal of Multiphase Flow, 1975, 2(2): 191-212.
|
| 9 |
Coulaloglou C A, Tavlarides L L. Description of interaction processes in agitated liquid-liquid dispersions[J]. Chemical Engineering Science, 1977, 32(11): 1289-1297.
|
| 10 |
MacKay G D M, Mason S G. The gravity approach and coalescence of fluid drops at liquid interfaces[J]. The Canadian Journal of Chemical Engineering, 1963, 41(5): 203-212.
|
| 11 |
Liu B, Manica R, Liu Q X, et al. Coalescence of bubbles with mobile interfaces in water[J]. Physical Review Letters, 2019, 122(19): 194501.
|
| 12 |
Ozan S C, Hosen H F, Jakobsen H A. On the prediction of coalescence and rebound of fluid particles: a film drainage study[J]. International Journal of Multiphase Flow, 2021, 135: 103521.
|
| 13 |
魏超, 罗和安, 王良芥. 两流体颗粒间最小液膜厚度的靠近-减薄耦合模型[J]. 化工学报, 2004, 55(5): 732-736.
|
|
Wei C, Luo H A, Wang L J. Model of minimum thickness of liquid film between two fluid particles by coupling of approaching and thinning[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(5): 732-736.
|
| 14 |
Zhang X R, Manica R, Tchoukov P, et al. Effect of approach velocity on thin liquid film drainage between an air bubble and a flat solid surface[J]. The Journal of Physical Chemistry C, 2017, 121(10): 5573-5584.
|
| 15 |
Svendsen H F, Luo H A. Modeling of approach processes for equal or unequal sized fluid particles[J]. The Canadian Journal of Chemical Engineering, 1996, 74(3): 321-330.
|
| 16 |
Hagesaether L, Jakobsen H A, Svendsen H F. Theoretical analysis of fluid particle collisions in turbulent flow[J]. Chemical Engineering Science, 1999, 54(21): 4749-4755.
|
| 17 |
Middleman S. Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops[M]. San Diego: Academic Press, 1995.
|
| 18 |
Gong S G, Gao N N, Han L C, et al. A theoretical model for bubble coalescence by coupling film drainage with approach processes[J]. Chemical Engineering Science, 2020, 213: 115387.
|
| 19 |
Wang S P, Wang Q X, Zhang A M, et al. Experimental observations of the behaviour of a bubble inside a circular rigid tube[J]. International Journal of Multiphase Flow, 2019, 121: 103096.
|
| 20 |
Orvalho S, Ruzicka M C, Olivieri G, et al. Bubble coalescence: effect of bubble approach velocity and liquid viscosity[J]. Chemical Engineering Science, 2015, 134: 205-216.
|
| 21 |
Zhao Y, Li Y P, Huang J, et al. Rebound and attachment involving single bubble and particle in the separation of plastics by froth flotation[J]. Separation and Purification Technology, 2015, 144: 123-132.
|
| 22 |
Supponen O, Obreschkow D, Farhat M. Rebounds of deformed cavitation bubbles[J]. Physical Review Fluids, 2018, 3(10): 103604.
|
| 23 |
Li M B, Hu L. Experimental investigation of the behaviors of highly deformed bubbles produced by coaxial coalescence[J]. Experimental Thermal and Fluid Science, 2020, 117: 110114.
|
| 24 |
Song R C, Han L C, Zhang L, et al. Experiments and modeling of bubbles colliding head-on in water[J]. AIChE Journal, 2021, 67(6): e17220.
|
| 25 |
Duineveld P C. Bouncing and coalescence of bubble pairs rising at high Reynolds number in pure water or aqueous surfactant solutions[M]//Fluid Mechanics and its Applications. Dordrecht: Springer Netherlands, 1998: 409-439.
|
| 26 |
王珏, 杨宁. 基于EMMS方法的鼓泡塔反应器CFD及群平衡模拟[J]. 化工学报, 2017, 68(7): 2667-2677.
|
|
Wang J, Yang N. CFD-PBM simulation with EMMS correctors for bubble column reactors[J]. CIESC Journal, 2017, 68(7): 2667-2677.
|
| 27 |
Kharlamov A A, Chára Z, Vlasák P. Hydraulic formulae for the added masses of an impermeable sphere moving near a plane wall[J]. Journal of Engineering Mathematics, 2008, 62(2): 161-172.
|
| 28 |
Gong S G, Han L C, Luo H A. A novel multiscale theoretical model for droplet coalescence induced by turbulence in the framework of entire energy spectrum[J]. Chemical Engineering Science, 2018, 176: 377-399.
|
| 29 |
La Forgia N, Herø E H, Jakobsen H A. High-speed image processing of fluid particle breakage in turbulent flow[J]. Chemical Engineering Science: X, 2021, 12: 100117.
|
| 30 |
Manica R, Klaseboer E, Chan D Y C. The hydrodynamics of bubble rise and impact with solid surfaces[J]. Advances in Colloid and Interface Science, 2016, 235: 214-232.
|
| 31 |
Nguyen C T, Gonnermann H M, Chen Y, et al. Film drainage and the lifetime of bubbles[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(9): 3616-3631.
|
| 32 |
Burrill K A, Woods D R. Film shapes for deformable drops at liquid-liquid interfaces(Ⅱ): The mechanisms of film drainage[J]. Journal of Colloid and Interface Science, 1973, 42(1): 15-34.
|
| 33 |
Israelachvili J N. Intermolecular and Surface Forces[M]. 3rd ed. Burlington, MA: Academic Press, 2011.
|
| 34 |
Karakashev S I, Nguyen P T, Tsekov R, et al. Anomalous ion effects on rupture and lifetime of aqueous foam films formed from monovalent salt solutions up to saturation concentration[J]. Langmuir, 2008, 24(20): 11587-11591.
|
| 35 |
Chesters A K. The modelling of coalescence processes in fluid-liquid dispersions: a review of current understanding[J]. Chemical Engineering Research & Design, 1991, 69: 259-270.
|
| 36 |
Vrij A, Overbeek J T G. Rupture of thin liquid films due to spontaneous fluctuations in thickness[J]. Journal of the American Chemical Society, 1968, 90(12): 3074-3078.
|