化工学报 ›› 2025, Vol. 76 ›› Issue (2): 731-743.DOI: 10.11949/0438-1157.20241076
• 分离工程 • 上一篇
杨林睿(), 刘鉴漪, 李玲, 何永超, 郑凯天, 任建坡, 许春建(
)
收稿日期:
2024-09-25
修回日期:
2024-11-06
出版日期:
2025-03-25
发布日期:
2025-03-10
通讯作者:
许春建
作者简介:
杨林睿(2000—),男,硕士研究生,ylr_500@ tju.edu.cn
基金资助:
Linrui YANG(), Jianyi LIU, Ling LI, Yongchao HE, Kaitian ZHENG, Jianpo REN, Chunjian XU(
)
Received:
2024-09-25
Revised:
2024-11-06
Online:
2025-03-25
Published:
2025-03-10
Contact:
Chunjian XU
摘要:
环己烯是重要的化工原料,苯部分加氢法是生产环己烯的重要途径,其加氢产物中存在未转化的苯和副产物环己烷,精馏分离过程能耗巨大。以苯/环己烷/环己烯精馏过程的节能为研究对象,采用Aspen Plus模拟进行了工业四塔萃取精馏流程(FC)和三塔萃取精馏流程(TC)的优化设计和经济性对比,并确定TC流程为较优流程。在TC流程基础上,提出了热集成流程(TH)、热泵辅助热集成流程(THP)、隔壁塔-苯塔流程(EC1)、环己烷塔-隔壁塔流程(EC2)、热泵辅助隔壁塔-苯塔流程(EHP1)和热泵辅助环己烷塔-隔壁塔流程(EHP2)。结果表明,与三塔萃取精馏流程相比,改进流程相比于TC流程在TAC、能耗和CO2排放量上均有不同程度的降低,其中EHP2流程的年度总成本、能耗和CO2排放量分别降低了21.1%、32.6%和31.7%,是最佳的流程。
中图分类号:
杨林睿, 刘鉴漪, 李玲, 何永超, 郑凯天, 任建坡, 许春建. 苯/环己烷/环己烯萃取精馏过程的流程设计与节能[J]. 化工学报, 2025, 76(2): 731-743.
Linrui YANG, Jianyi LIU, Ling LI, Yongchao HE, Kaitian ZHENG, Jianpo REN, Chunjian XU. Process design and energy saving for benzene/cyclohexane/cyclohexene extractive distillation process[J]. CIESC Journal, 2025, 76(2): 731-743.
项目 | 数值 | 单位 |
---|---|---|
冷凝水,298~308 K | 0.354 | USD/GJ |
低压蒸气,433.15 K | 13.280 | USD/GJ |
中压蒸气,462.15 K | 14.190 | USD/GJ |
电费 | 16.800 | USD/GJ |
表1 公用工程参数
Table 1 Utility parameters
项目 | 数值 | 单位 |
---|---|---|
冷凝水,298~308 K | 0.354 | USD/GJ |
低压蒸气,433.15 K | 13.280 | USD/GJ |
中压蒸气,462.15 K | 14.190 | USD/GJ |
电费 | 16.800 | USD/GJ |
1 | Yu J P, Shi L, Yuan Y, et al. Thermally coupled reactive distillation system for the separations of cyclohexene/cyclohexane mixtures[J]. Industrial & Engineering Chemistry Research, 2016, 55(1): 311-322. |
2 | Xie F, Chen L H, Morales E M C, et al. Complete separation of benzene-cyclohexene-cyclohexane mixtures via temperature-dependent molecular sieving by a flexible chain-like coordination polymer[J]. Nature Communications, 2024, 15(1): 2240. |
3 | Zhang P, Wu T B, Jiang T, et al. Ru-Zn supported on hydroxyapatite as an effective catalyst for partial hydrogenation of benzene[J]. Green Chemistry, 2013, 15(1): 152-159. |
4 | Qiu Z H, Li J H, He B X, et al. Fast adsorption and kinetic separation of benzene and cyclohexane/cyclohexene in a microporous metal azolate framework[J]. Journal of Materials Chemistry A, 2024, 12(22): 13240-13246. |
5 | Medford A J, Vojvodic A, Hummelshøj J S, et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis[J]. Journal of Catalysis, 2015, 328: 36-42. |
6 | Navarro P, Ovejero-Pérez A, Ayuso M, et al. Cyclohexane/cyclohexene separation by extractive distillation with cyano-based ionic liquids[J]. Journal of Molecular Liquids, 2019, 289: 111120. |
7 | Yao H, Wang Y M, Quan M, et al. Adsorptive separation of benzene, cyclohexene, and cyclohexane by amorphous nonporous amide naphthotube solids[J]. Angewandte Chemie International Edition, 2020, 59(45): 19945-19950. |
8 | 董冰, 张宝龙. 苯-环己烷-环己烯分离效果的研究[J]. 山西化工, 2019, 39(2): 54-55, 58. |
Dong B, Zhang B L. Study on the effect of separating benzene-cyclohexane-cyclohexene[J]. Shanxi Chemical Industry, 2019, 39(2): 54-55, 58. | |
9 | Rios J, Lebeau J, Yang T, et al. A critical review on the progress and challenges to a more sustainable, cost competitive synthesis of adipic acid[J]. Green Chemistry, 2021, 23(9): 3172-3190. |
10 | Lyu H, Li S H, Cui C T, et al. Superstructure modeling and stochastic optimization of side-stream extractive distillation processes for the industrial separation of benzene/cyclohexane/cyclohexene[J]. Separation and Purification Technology, 2021, 257: 117907. |
11 | Li Q, Finn A J, Doyle S J, et al. Synthesis and optimization of energy integrated advanced distillation sequences[J]. Separation and Purification Technology, 2023, 315: 123717. |
12 | Duan C, Li C L. Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation[J]. Energy, 2023, 263: 125821. |
13 | Li L M, Tu Y Q, Sun L Y, et al. Enhanced efficient extractive distillation by combining heat-integrated technology and intermediate heating[J]. Industrial & Engineering Chemistry Research, 2016, 55(32): 8837-8847. |
14 | Anokhina E, Timoshenko A, Rebrovskaya A, et al. Application systems with thermally coupled flows in extractive distillation of benzene-cyclohexane-toluene mixture with N-methylpyrrolidone[C]// 10th International conference on Distillation and Absorption. Friedrichshafen, Germany, 2014, 1: 527-532. |
15 | Ferchichi M, Hegely L, Lang P. Economic and environmental evaluation of heat pump-assisted pressure-swing distillation of maximum-boiling azeotropic mixture water-ethylenediamine[J]. Energy, 2022, 239: 122608. |
16 | Yu A Z, Ye Q, Li J L, et al. Energy-saving improvement of heat integration and heat pump for separating multi-azeotropes mixture via novel pressure swing distillation[J]. Chemical Engineering Science, 2023, 282: 119239. |
17 | Leng J J, Fan S D, Lu C Y, et al. Sustainable design and multi-objective optimization of heat pump assisted extractive distillation process for separating a ternary mixture of methyl acetate, tetrahydrofuran and methanol[J]. Journal of Cleaner Production, 2023, 419: 138186. |
18 | Wang C, Zhuang Y, Qin Y T, et al. Optimization and eco-efficiency analysis of extractive distillation processes with different solvents for separating the ternary mixture embedding two azeotropes[J]. Separation and Purification Technology, 2021, 269: 118763. |
19 | Sun L Y, Wang Q Y, Li L M, et al. Design and control of extractive dividing wall column for separating benzene/cyclohexane mixtures[J]. Industrial & Engineering Chemistry Research, 2014, 53(19): 8120-8131. |
20 | Yang A, Su Y, Chien I L, et al. Investigation of an energy-saving double-thermally coupled extractive distillation for separating ternary system benzene/toluene/cyclohexane[J]. Energy, 2019, 186: 115756. |
21 | Hartanto D, Schuur B, Kiss A A, et al. Effective selection of green organics and natural deep eutectic solvents as advanced entrainers by COSMO-RS and group contributions methods for enhanced design of extractive distillation[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2024: 1387-1392. |
22 | Harrison J M, Berg L. Vapor-liquid equilibria of binary hydrocarbon systems[J]. Industrial & Engineering Chemistry, 1946, 38(1): 117-120. |
23 | Mi W L, Tong R X, Hua C, et al. Vapor-liquid equilibrium data for binary systems of N,N-dimethylacetamide with cyclohexene, cyclohexane, and benzene separately at atmospheric pressure[J]. Journal of Chemical & Engineering Data, 2015, 60(11): 3063-3068. |
24 | Rolemberg M P, Krähenbühl M A. Vapor-liquid equilibria of binary and ternary mixtures of benzene, cyclohexane, and chlorobenzene at 40.0 kPa and 101.3 kPa[J]. Journal of Chemical & Engineering Data, 2001, 46(2): 256-260. |
25 | 张海全. 水合法制环己醇工艺中苯烷烯萃取精馏提纯研究[J]. 山西化工, 2020, 40(3): 108-109, 117. |
Zhang H Q. Study on extractive distillation of benzene/cyclohexane/cyclohexene in cyclohexanol production by hydration[J]. Shanxi Chemical Industry, 2020, 40(3): 108-109, 117. | |
26 | Pleşu V, Bonet Ruiz A E, Bonet J, et al. Simple equation for suitability of heat pump use in distillation[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2014: 1327-1332. |
27 | Douglas J M. Conceptual Design Chemical Processes[M]. New York: McGraw-Hill, 1998. |
28 | Luyben W L. Distillation Design and Control Using Aspen Simulation[M]. 2nd ed. Hoboken, N.J.: Wiley, 2013. |
29 | Huang J H, Zhang Q J, Liu C J, et al. Optimal design of the ternary azeotrope separation process assisted by reactive-extractive distillation for ethyl acetate/isopropanol/water[J]. Separation and Purification Technology, 2023, 306: 122708. |
30 | Iwakabe K, Nakaiwa M, Huang K J, et al. Energy saving in multicomponent separation using an internally heat-integrated distillation column (HIDiC)[J]. Applied Thermal Engineering, 2006, 26(13): 1362-1368. |
31 | Shi T, Liu Y, Yu H S, et al. Improved design of heat-pump extractive distillation based on the process optimization and multi-criteria sustainability analysis[J]. Computers & Chemical Engineering, 2022, 156: 107552. |
[1] | 崔家馨, 殷梦凡, 郑涛, 刘晗, 张睿, 刘植昌, 刘海燕, 徐春明, 孟祥海. 铝铜双金属离子液体在1-己烯/正己烷分离中的应用[J]. 化工学报, 2025, 76(2): 686-694. |
[2] | 贾晶宇, 孔德齐, 沈圆辉, 张东辉, 李文彬, 唐忠利. 合成氨反应器尾气变压吸附氨分离工艺的模拟与分析[J]. 化工学报, 2025, 76(2): 718-730. |
[3] | 何传超, 周静红, 曹约强, 施尧, 周兴贵. Ag/SiO2催化草酸酯加氢制乙醇酸甲酯的床层-颗粒双尺度耦合模拟研究[J]. 化工学报, 2025, 76(2): 654-666. |
[4] | 尤潇楠, 范小强, 杨遥, 王靖岱, 阳永荣. 超临界乙烯和高压聚乙烯混合物的减压分离过程建模方法[J]. 化工学报, 2025, 76(2): 695-706. |
[5] | 党法璐, 孙志国, 高照, 王刚, 陈政宇, 张霖宙, 连竞存, 刘美佳, 张忠东, 刘超伟. 原油一步法催化裂解制低碳烯烃:实验和反应路径研究[J]. 化工学报, 2025, 76(2): 667-685. |
[6] | 张珂, 任维杰, 王梦娜, 范凯锋, 常丽萍, 李佳斌, 马涛, 田晋平. Bunsen反应产物在微通道中的液-液两相混合特性[J]. 化工学报, 2025, 76(2): 623-636. |
[7] | 张鑫源, 何呈祥, 李亚婷, 朱春英, 马友光, 付涛涛. 微通道内液液非均相传质的模拟和实验研究方法进展[J]. 化工学报, 2025, 76(2): 484-503. |
[8] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 重质颗粒流态化研究现状与展望[J]. 化工学报, 2025, 76(2): 466-483. |
[9] | 孟祥军, 杨林睿, 彭立培, 杨献奎, 花莹曦, 张人仁, 郑凯天, 许春建. 三氟化氮精馏分离流程的设计与控制[J]. 化工学报, 2025, 76(2): 707-717. |
[10] | 董举, 余留洋, 贾晟哲, 史连军, 王诗瀚, 胡国涛, 汤伟伟, 王静康, 龚俊波. 电子级磷酸的结晶精制技术发展现状与研究进展[J]. 化工学报, 2025, 76(2): 438-453. |
[11] | 刘萍, 邱雨生, 李世婧, 孙瑞奇, 申晨. 微通道内纳米流体传热流动特性[J]. 化工学报, 2025, 76(1): 184-197. |
[12] | 韩志敏, 周相宇, 张宏宇, 徐志明. 不同粗糙元结构下CaCO3污垢局部沉积特性[J]. 化工学报, 2025, 76(1): 151-160. |
[13] | 韩启沃, 刘永峰, 裴普成, 张璐, 姚圣卓. 工作温度对PEMFC水分布、质子传输及性能影响分析[J]. 化工学报, 2025, 76(1): 374-384. |
[14] | 邓志诚, 杨欢, 王斯民, 王家瑞. 微混燃烧器中微管结构对氢燃料掺混效果与燃烧性能影响[J]. 化工学报, 2025, 76(1): 335-347. |
[15] | 张思文, 顾海明, 赵善辉. 纳米氧化铁对纤维素化学链气化的分子反应机理[J]. 化工学报, 2025, 76(1): 363-373. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 128
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 85
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||