| [1] |
Li X, Tan H, Ni Z, et al. Select sensitivity parameters for proton exchange membrane fuel cell model: an identification method from analytical Butler-Volmer equation[J]. Journal of Power Sources, 2024, 608: 234330.
|
| [2] |
Rasheed R K A, Liao Q, Caizhi Z, et al. A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs)[J]. International journal of hydrogen energy, 2017, 42(5): 3142-3165.
|
| [3] |
Fan L, Zhang G, Jiao K. Characteristics of PEMFC operating at high current density with low external humidification[J]. Energy Conversion and Management, 2017, 150: 763-774.
|
| [4] |
Cullen D A, Neyerlin K C, Ahluwalia R K, et al. New roads and challenges for fuel cells in heavy-duty transportation[J]. Nature Energy, 2021, 6: 462-474.
|
| [5] |
Fan R X, Li Z Q, Zhang H M, et al. Analysis of a combined heating and power system based on high-temperature proton exchange membrane fuel cell and steam methane reforming: from energy, exergy and economic point of views[J]. Applied Thermal Engineering, 2024, 247: 123075.
|
| [6] |
Pei P C, Xu Y M, Wang M K, et al. Effects of carbon monoxide on proton exchange membrane fuel cells and elimination techniques[J]. International Journal of Hydrogen Energy, 2024, 69: 1287-1304.
|
| [7] |
Valdés-López V F, Mason T, Shearing P R, et al. Carbon monoxide poisoning and mitigation strategies for polymer electrolyte membrane fuel cells—a review[J]. Progress in Energy and Combustion Science, 2020, 79: 100842.
|
| [8] |
Xu J W, Wu Y H, Xiao S Y, et al. Synergic effect investigation of carbon monoxide and other compositions on the high temperature proton exchange membrane fuel cell[J]. Renewable Energy, 2023, 211: 669-680.
|
| [9] |
Pei P, Wang M, Chen D, et al. Key technologies for polymer electrolyte membrane fuel cell systems fueled impure hydrogen[J]. Progress in Natural Science: Materials International, 2020, 30(6): 751-763.
|
| [10] |
Das S K, Reis A, Berry K J. Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell[J]. Journal of Power Sources, 2009, 193(2): 691-698.
|
| [11] |
Chen C Y, Lai W H, Chen Y K, et al. Characteristic studies of a PBI/H3PO4 high temperature membrane PEMFC under simulated reformate gases[J]. International journal of hydrogen energy, 2014, 39(25): 13757-13762.
|
| [12] |
Zhang J, Zhang C Z, Li J, et al. Multi-perspective analysis of CO poisoning in high-temperature proton exchange membrane fuel cell stack via numerical investigation[J]. Renewable Energy, 2021, 180: 313-328.
|
| [13] |
Xu J W, Xiao S Y, Xu X R, et al. Numerical study of carbon monoxide poisoning effect on high temperature PEMFCs based on an elementary reaction kinetics coupled electrochemical reaction model[J]. Applied Energy, 2022, 318: 119214.
|
| [14] |
Lei G, Zheng H L, Zhang J, et al. Analyzing characteristic and modeling of high-temperature proton exchange membrane fuel cells with CO poisoning effect[J]. Energy, 2023, 282: 128305.
|
| [15] |
Jeppesen C, Polverino P, Andreasen S J, et al. Impedance characterization of high temperature proton exchange membrane fuel cell stack under the influence of carbon monoxide and methanol vapor[J]. International Journal of Hydrogen Energy, 2017, 42(34): 21901-21912.
|
| [16] |
Zhang Z N, Xia Z X, Huang J C, et al. Water-induced electrode poisoning and the mitigation strategy for high temperature polymer electrolyte membrane fuel cells[J]. Journal of Energy Chemistry, 2022, 69: 569-575.
|
| [17] |
Niya S M R, Hoorfar M. Study of proton exchange membrane fuel cells using electrochemical impedance spectroscopy technique—a review[J]. Journal of Power Sources, 2013, 240: 281-293.
|
| [18] |
Darowicki K, Gawel L, Mielniczek M, et al. The impedance of hydrogen oxidation reaction in a proton exchange membrane fuel cell in the presence of carbon monoxide in hydrogen stream[J]. Applied Energy, 2020, 279: 115868.
|
| [19] |
Tang Z P, Huang Q A, Wang Y J, et al. Recent progress in the use of electrochemical impedance spectroscopy for the measurement, monitoring, diagnosis and optimization of proton exchange membrane fuel cell performance[J]. Journal of Power Sources, 2020, 468: 228361.
|
| [20] |
Lu Y, Zhao C Z, Huang J Q, et al. The timescale identification decoupling complicated kinetic processes in lithium batteries[J]. Joule, 2022, 6(6): 1172-1198.
|
| [21] |
Xu J W, Zhao Y W, Wu Y H, et al. Experimental investigation on influences of methanol reformate impurities in performances of high temperature proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2023, 48(45): 17261-17276.
|
| [22] |
Bevilacqua N, Schmid M A, Zeis R. Understanding the role of the anode on the polarization losses in high-temperature polymer electrolyte membrane fuel cells using the distribution of relaxation times analysis[J]. Journal of Power Sources, 2020, 471: 228469.
|
| [23] |
Schindler S, Weiß A, Galbiati S, et al. Identification of polarization losses in high-temperature PEM fuel cells by distribution of relaxation times analysis[J]. ECS Transactions, 2016, 75(14): 45-53.
|
| [24] |
Weiß A, Schindler S, Galbiati S, et al. Distribution of relaxation times analysis of high-temperature PEM fuel cell impedance spectra[J]. Electrochimica Acta, 2017, 230: 391-398.
|
| [25] |
Yuan H, Dai H F, Wei X Z, et al. Internal polarization process revelation of electrochemical impedance spectroscopy of proton exchange membrane fuel cell by an impedance dimension model and distribution of relaxation times[J]. Chemical Engineering Journal, 2021, 418: 129358.
|
| [26] |
Heinzmann M, Weber A, Ivers-Tiffée E. Advanced impedance study of polymer electrolyte membrane single cells by means of distribution of relaxation times[J]. Journal of Power Sources, 2018, 402: 24-33.
|
| [27] |
Heinzmann M, Weber A. Impedance based performance model for polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2023, 558: 232540.
|
| [28] |
Xiao W, Xia Z X, Li H Q, et al. Electrochemical interface optimization toward low oxygen transport resistance in high-temperature polymer electrolyte fuel cells[J]. Energy Technology, 2020, 8(9): 2000085.
|
| [29] |
Schönleber M, Klotz D, Ivers-Tiffée E. A method for improving the robustness of linear Kramers-Kronig validity tests[J]. Electrochimica Acta, 2014, 131: 20-27.
|
| [30] |
Wan T H, Saccoccio M, Chen C, et al. Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRT tools[J]. Electrochimica Acta, 2015, 184: 483-499.
|