化工学报 ›› 2025, Vol. 76 ›› Issue (S1): 187-194.DOI: 10.11949/0438-1157.20241389
• 流体力学与传递现象 • 上一篇
收稿日期:2024-12-02
修回日期:2024-12-17
出版日期:2025-06-25
发布日期:2025-06-26
通讯作者:
王文
作者简介:黄灏(1999—),男,硕士研究生,paff-official@sjtu.edu.cn
Hao HUANG1(
), Wen WANG1(
), Longkun HE2
Received:2024-12-02
Revised:2024-12-17
Online:2025-06-25
Published:2025-06-26
Contact:
Wen WANG
摘要:
在LNG船的装载过程中,预冷作为确保舱内设备和围护结构可靠性的关键工艺环节,具有重要作用。以LNG船薄膜型液货舱为研究对象,通过构建二维柱坐标系网格,并采用相似方法对液货舱内流场及壁面温度进行数值模拟。该研究不仅显著提升了计算效率,同时较好地还原了液货舱在预冷过程中温度梯度的演变过程。研究结果表明,应重点关注液货舱舱底中心区域以及舱底与侧面交界处的温度变化;为确保主屏蔽层温度下降梯度处于安全范围内,预冷流量需在特定控制策略下进行精准调节。
中图分类号:
黄灏, 王文, 贺隆坤. LNG船薄膜型液货舱预冷过程模拟与分析[J]. 化工学报, 2025, 76(S1): 187-194.
Hao HUANG, Wen WANG, Longkun HE. Simulation and analysis on precooling process of membrane LNG carriers[J]. CIESC Journal, 2025, 76(S1): 187-194.
| 参数 | 原始模型 | 二维柱坐标系 |
|---|---|---|
| 总舱容/m3 | 41096 | 41096 |
| 底面面积/m2 | 1310 | 1483 |
| 顶面面积/m2 | 1048 | 1483 |
| 侧面面积(含斜面)/m2 | 5107 | 3783 |
| 总换热面积/m2 | 7465 | 6749 |
表1 液货舱参数与简化后的二维柱坐标系模型参数的对比
Table 1 Parameters of a membrane type carrier and its simplified cylindrical model
| 参数 | 原始模型 | 二维柱坐标系 |
|---|---|---|
| 总舱容/m3 | 41096 | 41096 |
| 底面面积/m2 | 1310 | 1483 |
| 顶面面积/m2 | 1048 | 1483 |
| 侧面面积(含斜面)/m2 | 5107 | 3783 |
| 总换热面积/m2 | 7465 | 6749 |
| 边界类型 | 参数类型 | 参数取值 |
|---|---|---|
| 进口边界 | 进口速度/(m·s-1) | 0.3325 |
| 进口区域/m | 0 ≤ r ≤ 2.77625 | |
| 进口温度/K | 120 | |
| 折算流量/(kg·h-1) | 6400 | |
| 出口边界 | 出口压力/kPa | 125 |
| 冷源项影响区域 | 冷却功率/(W·m-3) | 542 |
表2 边界条件参数及取值
Table 2 Parameters of the boundary condition
| 边界类型 | 参数类型 | 参数取值 |
|---|---|---|
| 进口边界 | 进口速度/(m·s-1) | 0.3325 |
| 进口区域/m | 0 ≤ r ≤ 2.77625 | |
| 进口温度/K | 120 | |
| 折算流量/(kg·h-1) | 6400 | |
| 出口边界 | 出口压力/kPa | 125 |
| 冷源项影响区域 | 冷却功率/(W·m-3) | 542 |
| 结构 | 厚度/mm | 材料 | 比定压热容/(J·(kg·K)-1) | 密度/(kg·m-3) | 热导率/(W·(m·K)-1) |
|---|---|---|---|---|---|
| 主屏蔽层 | 0.7 | 殷瓦钢 | 480 | 8130 | 13.80 |
| 主绝缘层 | 230 | 膨胀珍珠岩 | 387 | 50 | 0.03 |
| 次绝缘层 | 300 | 膨胀珍珠岩 | 387 | 50 | 0.03 |
| 船舱内壳 | 30 | 船用钢 | 480 | 8130 | 13.80 |
表3 围护系统结构及材料物性[16-18]
Table 3 Structure and properties of the enclosures[16-18]
| 结构 | 厚度/mm | 材料 | 比定压热容/(J·(kg·K)-1) | 密度/(kg·m-3) | 热导率/(W·(m·K)-1) |
|---|---|---|---|---|---|
| 主屏蔽层 | 0.7 | 殷瓦钢 | 480 | 8130 | 13.80 |
| 主绝缘层 | 230 | 膨胀珍珠岩 | 387 | 50 | 0.03 |
| 次绝缘层 | 300 | 膨胀珍珠岩 | 387 | 50 | 0.03 |
| 船舱内壳 | 30 | 船用钢 | 480 | 8130 | 13.80 |
| 1 | GTT.NO96 System [EB/OL].[2024-11-01]. . |
| 2 | 卢炜. LNG船舶薄膜型液货舱预冷工艺研究[D]. 大连: 大连海事大学, 2012. |
| Lu W. Study on the pre-cooling process of membrane liquid cargo tank of LNG carriers[D]. Dalian: Dalian Maritime University, 2012. | |
| 3 | Lu J S, Xu S, Deng J, et al. Numerical prediction of temperature field for cargo containment system (CCS) of LNG carriers during pre-cooling operations[J]. Journal of Natural Gas Science and Engineering, 2016, 29: 382-391 |
| 4 | 徐松, 卢金树. LNG船液舱预冷时货物维护系统温度场数值预报模型[J]. 船舶与海洋工程, 2016, 32(03): 27-33. |
| Xu S, Lu J S. Numerical prediction model for lng carrier cargo containment system temperature field during pre-cooling operation[J]. Naval Architecture and Ocean Engineering, 2016, 32(03): 27-33. | |
| 5 | 邓佳佳, 许健, 卢金树, 等. LNG船单液舱预冷传热特性分析与优化[J]. 煤气与热力, 2018, 38(11): 25-31. |
| Deng J J, Xu J, Lu J S, et al. Analysis and optimization of pre-cooling heat transfer characteristics of single liquid tank in LNG carrier[J]. Gas & Heat, 2018, 38(11): 25-31. | |
| 6 | 汪世涛. LNG储罐预冷的方案分析及影响因素研究[J]. 石油和化工设备, 2024, 27(3): 83-86. |
| Wang S T. Analysis of precooling schemes for LNG storage tanks and research on influencing factors[J]. Petro & Chemical Equipment, 2024, 27(3): 83-86. | |
| 7 | 王庆丰, 徐骁, 章瑶, 等. Mark-Ⅲ型围护系统模拟舱低温试验及数值仿真[J]. 江苏科技大学学报(自然科学版), 2021, 35(4): 17-24. |
| Wang Q F, Xu X, Zhang Y, et al. Low temperature test and numerical simulation of the simulated tank containment system of Mark-Ⅲ[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2021, 35(4): 17-24. | |
| 8 | Piasecki T, Bejger A, Wieczorek A. Experimental studies of cargo tank cooldown in an LNG carrier[J]. European Research Studies Journal, 2021, 29: 886-895. |
| 9 | 杨文刚, 杨元春, 高玮, 等. LNG储罐预冷温度变化规律算法研究[J]. 中国海上油气, 2024, 36(4): 230-238. |
| Yang W G, Yang Y C, Gao W, et al. Research on algorithm for temperature change law of LNG storage tank during pre-cooling[J]. China Offshore Oil and Gas, 2024, 36(4): 230-238. | |
| 10 | 邓文源, 田连军, 童文龙, 等. 大型LNG储罐预冷动态模拟[J]. 化工学报, 2015, 66(S2): 399-404. |
| Deng W Y, Tian L J, Tong W L, et al. Dynamic simulation of pre-cooling processes for large-scale LNG storage tanks[J]. CIESC Journal, 2015, 66(S2): 399-404. | |
| 11 | 李金娟, 滕慧, 张学妙, 等. 16万方LNG储罐预冷数值模拟研究[J]. 低温与超导, 2019, 47(3): 17-23, 77. |
| LiJ J, Teng H, Zhang X M, et al. Numerical simulation of the 160000 m3 LNG tank pre-cooling[J]. Cryogenics & Superconductivity, 2019, 47(3): 17-23, 77. | |
| 12 | 荣广新. LNG-FSRU储罐投产过程动态模拟及方案优化[D]. 北京: 中国石油大学(北京), 2023. |
| Rong G X. Dynamic simulation and scheme optimization of LNG-FSRU tank commissioning process[D]. Beijing: China University of Petroleum (Beijing), 2023. | |
| 13 | 匡以武, 耑锐, 王文, 等. 液化天然气储罐预冷过程温度场数值模拟[J]. 化工学报, 2015, 66(S2): 138-142. |
| Kuang Y W, Zhuang R, Wang W, et al. Simulation of pre-cooling of a liquefied natural gas storage tank[J]. CIESC Journal, 2015, 66(S2): 138-142. | |
| 14 | 李兆慈, 郭保玲, 吴鑫, 等. 全容式LNG储罐传热分析与数值计算[J]. 化工学报, 2015, 66(S2): 132-137. |
| Li Z C, Guo B L, Wu X, et al. Heat transfer analysis and numerical calculation for full containment LNG tank[J]. CIESC Journal, 2015, 66(S2): 132-137. | |
| 15 | Ghiaasiaan S M. Convective Heat and Mass Transfer[M]. Cambridge: Cambridge University Press, 2011. |
| 16 | 丁仕风. 大型液化天然气船超低温作用下结构安全问题研究[D]. 上海: 上海交通大学, 2010. |
| Ding S F. Research on structure safety of large LNG carrier under ultra-low temperature[D]. Shanghai: Shanghai Jiao Tong University, 2010. | |
| 17 | Li M, Ju Y L. Experimental measurements and evaluation of the expanded water repellent perlite used for the cargo containment system of LNG carrier[J]. Cryogenics, 2017, 87: 49-57. |
| 18 | Choi S W, Roh J U, Kim M S, et al. Analysis of two main LNG CCS (cargo containment system) insulation boxes for leakage safety using experimentally defined thermal properties[J]. Applied Ocean Research, 2012, 37: 72-89. |
| 19 | 中国船级社. 液化气体运输船检验指南 [S]. 北京, 2018. |
| China Classification Society. Guidelines for Inspection of Liquefied Gas Transport Ships [S]. Beijing, 2018. |
| [1] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [2] | 刘璐, 万开, 王文玥, 王太, 汤建成, 王少恒. 基于氦膨胀制冷的正仲氢转化耦合流动换热研究[J]. 化工学报, 2025, 76(4): 1513-1522. |
| [3] | 许成城, 邵索拉, 魏文建, 郑旭. 多工况下直凝式蓄热型铝制辐射板换热器供暖性能研究[J]. 化工学报, 2025, 76(4): 1545-1558. |
| [4] | 贾文龙, 肖欢, 冷翔宇, 黄巧竞, 刘程玮, 吴瑕. 原油储罐重质沉积物超声波空化微射流清洗实验及数值模拟[J]. 化工学报, 2025, 76(3): 1288-1296. |
| [5] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 重质颗粒流态化研究现状与展望[J]. 化工学报, 2025, 76(2): 466-483. |
| [6] | 姚佳逸, 张东辉, 唐忠利, 李文彬. 基于二级双回流的变压吸附捕碳工艺研究[J]. 化工学报, 2025, 76(2): 744-754. |
| [7] | 贾晶宇, 孔德齐, 沈圆辉, 张东辉, 李文彬, 唐忠利. 合成氨反应器尾气变压吸附氨分离工艺的模拟与分析[J]. 化工学报, 2025, 76(2): 718-730. |
| [8] | 何传超, 周静红, 曹约强, 施尧, 周兴贵. Ag/SiO2催化草酸酯加氢制乙醇酸甲酯的床层-颗粒双尺度耦合模拟研究[J]. 化工学报, 2025, 76(2): 654-666. |
| [9] | 张珂, 任维杰, 王梦娜, 范凯锋, 常丽萍, 李佳斌, 马涛, 田晋平. Bunsen反应产物在微通道中的液-液两相混合特性[J]. 化工学报, 2025, 76(2): 623-636. |
| [10] | 张泽雨, 王平, 戴凯论, 钱伟佳, Roy Subhajit, 帅瑞洋, Ferrante Antonio. 轴向双级氨/甲烷湍流预混火焰燃烧特性及NO生成[J]. 化工学报, 2025, 76(2): 835-845. |
| [11] | 王瀚彬, 胡帅, 毕丰雷, 李隽森, 贺来宾. 新型波纹翅片金属氢化物反应器的放氢性能有限元分析[J]. 化工学报, 2025, 76(1): 221-230. |
| [12] | 高羡明, 杨汶轩, 卢少辉, 任晓松, 卢方财. 双槽道结构对超疏水表面液滴合并弹跳的影响[J]. 化工学报, 2025, 76(1): 208-220. |
| [13] | 刘萍, 邱雨生, 李世婧, 孙瑞奇, 申晨. 微通道内纳米流体传热流动特性[J]. 化工学报, 2025, 76(1): 184-197. |
| [14] | 韩志敏, 周相宇, 张宏宇, 徐志明. 不同粗糙元结构下CaCO3污垢局部沉积特性[J]. 化工学报, 2025, 76(1): 151-160. |
| [15] | 韩启沃, 刘永峰, 裴普成, 张璐, 姚圣卓. 工作温度对PEMFC水分布、质子传输及性能影响分析[J]. 化工学报, 2025, 76(1): 374-384. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号