化工学报 ›› 2025, Vol. 76 ›› Issue (1): 208-220.DOI: 10.11949/0438-1157.20240774
收稿日期:
2024-07-10
修回日期:
2024-08-19
出版日期:
2025-01-25
发布日期:
2025-02-08
通讯作者:
高羡明
作者简介:
高羡明(1984—),男,博士,讲师,gaoxianming@sust.edu.cn
基金资助:
Xianming GAO(), Wenxuan YANG, Shaohui LU, Xiaosong REN, Fangcai LU
Received:
2024-07-10
Revised:
2024-08-19
Online:
2025-01-25
Published:
2025-02-08
Contact:
Xianming GAO
摘要:
超疏水表面上的液滴弹跳现象在芯片高效散热、防腐蚀、结冰等领域具有较高的应用价值。为研究双槽道对液滴弹跳性能的影响,设计并制备了由双V槽道构成的W型槽道超疏水表面,试验研究了W型槽道底部间距w、槽道深度h对液滴弹跳速度及能量转化效率的影响,采用数值模拟方式研究了W型槽道的超疏水表面液滴合并弹跳过程中表面能的演化。结果表明,槽宽为0.9 mm的W型槽道所适配的液滴半径为0.5~0.9 mm,此范围内槽道深度h为0.5~0.8 mm、槽道底部间距w为0.5~0.8 mm时对提升液滴合并弹跳的效果更显著;随着液滴半径减小、槽道深度增加、槽道底部间距减小,液滴的合并弹跳速度增加;槽道参数在0.5~0.7 mm内同时增加时,弹跳速度增加,而在0.8 mm时降低。研究结果可为冷凝换热和防腐蚀等领域的表面设计提供参考。
中图分类号:
高羡明, 杨汶轩, 卢少辉, 任晓松, 卢方财. 双槽道结构对超疏水表面液滴合并弹跳的影响[J]. 化工学报, 2025, 76(1): 208-220.
Xianming GAO, Wenxuan YANG, Shaohui LU, Xiaosong REN, Fangcai LU. Influence of droplet merging and jumping by dual-groove structures on superhydrophobic surfaces[J]. CIESC Journal, 2025, 76(1): 208-220.
图9 W型试件的液滴动力学:(a)W型试件上水滴(R≈0.6 mm)聚结过程中无量纲过剩表面能(Eex*surf)和无量纲向上动能(Eup*kin)的演变(w=0.6 mm,h=0.6 mm);(b)~(g)一系列快照,显示W型槽道的超疏水表面上液滴内的速度和压力矢量
Fig.9 Droplet dynamics of W-shaped specimen:(a) Evolution of dimensionless excess surface energy (Eex*surf) and dimensionless upward energy (Eup*kin) during coalescence of water droplets (R≈0.6 mm) on a W specimen (w=0.6 mm,h=0.6 mm); (b)—(f) A series of snapshots showing the velocity and pressure vectors in a droplet on superhydrophobic surfaces of a W-shaped channel
图12 在具有不同槽道深度h的W型槽道表面上弹跳速度、无量纲弹跳速度、能量转化率与液滴半径的关系(试验结果)
Fig.12 The relationship between the bounce velocity, dimensionless bounce velocity, energy conversion and droplet radius on a W-shaped channel surface with different channel depth h (test results)
图13 在具有不同槽道深度h的W型槽道表面上弹跳速度与液滴半径的关系(试验结果)
Fig.13 The relationship between the bounce velocity and the droplet radius on the surface of W-shaped grooves with different groove depths h (test results)
图14 在具有不同槽道底部间距w的W型槽道表面上弹跳速度、无量纲弹跳速度、能量转化率与液滴半径的关系(试验结果)
Fig.14 The relationship between the bounce velocity, dimensionless bounce velocity, energy conversion and droplet radius on the surface of W-shaped grooves with different bottom spacing w (test results)
图15 在具有不同槽道参数(h=w)的W型槽道表面上弹跳速度、无量纲弹跳速度、能量转化率与液滴半径的关系(试验结果)
Fig.15 The relationship between the bounce velocity, dimensionless bounce velocity, energy conversion and droplet radius on the surface of W-shaped grooves with different groove parameters (h=w)(test results)
1 | Boreyko J B, Chen C H. Self-propelled dropwise condensate on superhydrophobic surfaces[J]. Physical Review Letters, 2009, 103(18): 184501. |
2 | 史维秀, 李惟毅, 谈西峰, 等. 机械加工表面强化管管外全凝与部分凝结换热实验[J]. 天津大学学报, 2011, 44(6): 529-534. |
Shi W X, Li W Y, Tan X F, et al. Experimental investigation on whole and part condensation heat transfer for mechanically fabricated surface enhanced tube[J]. Journal of Tianjin University (Science and Technology), 2011, 44(6): 529-534. | |
3 | Lan Z, Chen Y S, Hu S B, et al. Droplet regulation and dropwise condensation heat transfer enhancement on hydrophobic-superhydrophobic hybrid surfaces[J]. Heat Transfer Engineering, 2018, 39(17/18): 1540-1551. |
4 | Yan X, Zhang L C, Sett S, et al. Droplet jumping: effects of droplet size, surface structure, pinning, and liquid properties[J]. ACS Nano, 2019, 13(2): 1309-1323. |
5 | Wang X, Xu B, Chen Z Q, et al. Review of droplet dynamics and dropwise condensation enhancement: theory, experiments and applications[J]. Advances in Colloid and Interface Science, 2022, 305: 102684. |
6 | Boreyko J B, Chen C H. Self-propelled jumping drops on superhydrophobic surfaces[J]. Physics of Fluids, 2010, 22(9): 091110. |
7 | Chen Y, Islam A, Sussman M, et al. Numerical investigation of surface curvature effect on the self-propelled capability of coalesced drops[J]. Physics of Fluids, 2020, 32(12): 122117. |
8 | Wang X, Xu B, Chen Z Q. Hierarchical microporous superhydrophobic surfaces with nanostructures enhancing vapor condensation heat transfer[J]. Applied Thermal Engineering, 2023, 219: 119527. |
9 | Mahvi A J, Boyina K, Musser A, et al. Superhydrophobic heat exchangers delay frost formation and enhance efficency of electric vehicle heat pumps[J]. International Journal of Heat and Mass Transfer, 2021, 172: 121162. |
10 | Wen R F, Xu S S, Zhao D L, et al. Hierarchical superhydrophobic surfaces with micropatterned nanowire arrays for high-efficiency jumping droplet condensation[J]. ACS Applied Materials & Interfaces, 2017, 9(51): 44911-44921. |
11 | Zhang L Z, Yuan W Z. A lattice Boltzmann simulation of coalescence-induced droplet jumping on superhydrophobic surfaces with randomly distributed structures[J]. Applied Surface Science, 2018, 436: 172-182. |
12 | Ding Y, Jia L, Yin L F, et al. Anisotropic wetting characteristics of droplet on micro-grooved surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633: 127850. |
13 | Gao S H, Hu Z F, Wu X M. Enhanced horizontal mobility of a coalesced jumping droplet on superhydrophobic surfaces with an asymmetric ridge[J]. Physics of Fluids, 2022, 34(12): 122104. |
14 | Wang K, Liang Q Q, Jiang R, et al. Self-enhancement of droplet jumping velocity: the interaction of liquid bridge and surface texture[J]. RSC Advances, 2016, 6(101): 99314-99321. |
15 | 李英杰, 李奇侠, 王宏, 等. 波浪结构超疏水表面对液滴聚并弹跳的影响[J]. 化工学报, 2022, 73(10): 4345-4354. |
Li Y J, Li Q X, Wang H, et al. Influence of wavy-structured superhydrophobic surfaces on coalescenceinduced droplet jumping[J]. CIESC Journal, 2022, 73(10): 4345-4354. | |
16 | 王凯, 梁倩卿, 姜睿, 等. 凸起微结构对超疏水表面液滴弹跳强化机理的研究[J]. 高校化学工程学报, 2017, 31(3): 663-668. |
Wang K, Liang Q Q, Jiang R, et al. Mechanism of droplet jumping enhancement by raised structures on superhydrophobic surfaces[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(3): 663-668. | |
17 | Tang H D, Liu X H. Experimental study of dew formation on metal radiant panels[J]. Energy and Buildings, 2014, 85: 515-523. |
18 | Zhao G L, Zou G S, Wang W G, et al. Rationally designed surface microstructural features for enhanced droplet jumping and anti-frosting performance[J]. Soft Matter, 2020, 16(18): 4462-4476. |
19 | Xie F F, Lu G, Wang X D, et al. Enhancement of coalescence-induced nanodroplet jumping on superhydrophobic surfaces[J]. Langmuir, 2018, 34(37): 11195-11203. |
20 | He X K, Zhao L, Cheng J T. Coalescence-induced swift jumping of nanodroplets on curved surfaces[J]. Langmuir, 2019, 35(30): 9979-9987. |
21 | Han T, Kwak H J, Kim J H, et al. Nanograssed zigzag structures to promote coalescence-induced droplet jumping[J]. Langmuir, 2019, 35(27): 9093-9099. |
22 | Lu D Q, Zhao M R, Zhang H L, et al. Self-enhancement of coalescence-induced droplet jumping on superhydrophobic surfaces with an asymmetric V-groove[J]. Langmuir, 2020, 36(19): 5444-5453. |
23 | 吴卫民, 郑佳宜, 王芳. 凹槽结构强化液滴合并弹跳的数值研究[J]. 表面技术, 2024, 53(2): 193-200. |
Wu W M, Zheng J Y, Wang F. Numerical study of enhanced droplet merging and bouncing by groove structure[J]. Surface Technology, 2024, 53(2): 193-200. | |
24 | Vahabi H, Wang W, Mabry J M, et al. Coalescence-induced jumping of droplets on superomniphobic surfaces with macrotexture[J]. Science Advances, 2018, 4(11): eaau3488. |
25 | Li B B, Xin F, Tan W, et al. A new theoretical model for coalescence-induced droplet jumping on hydrophobic fibers[J]. Industrial & Engineering Chemistry Research, 2018, 57(24): 8299-8307. |
26 | 彭启, 贾力, 丁艺, 等. 受限微结构对低表面张力液滴合并弹跳的影响[J]. 化工学报, 2021, 72(4): 1920-1929. |
Peng Q, Jia L, Ding Y, et al. The effect of confined microstructures on the coalescence-induced droplet jumping with low surface tension[J]. CIESC Journal, 2021, 72(4): 1920-1929. | |
27 | 成赛凤, 梁彩华, 赵伟, 等. 疏水表面液滴合并弹跳过程的数值模拟[J]. 化工学报, 2018, 69(S2): 153-160. |
Cheng S F, Liang C H, Zhao W, et al. Numerical simulation of droplet merging and bouncing process on hydrophobic surface[J]. CIESC Journal, 2018, 69(S2): 153-160. | |
28 | 徐增光, 彭毅, 焦会馨. 仿叶脉均热板的传热性能实验研究[J]. 航天器环境工程, 2023, 40(3): 226-232. |
Xu Z G, Peng Y, Jiao H X. Experimental study on heat transfer performance of bionic vein vapor chamber[J]. Spacecraft Environment Engineering, 2023, 40(3): 226-232. | |
29 | 路敦强, 张涵莅, 杨永, 等. V型槽棱角对液滴弹跳强化机理的研究[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(9): 907-916. |
Lu D Q, Zhang H L, Yang Y, et al. Research on the mechanism of droplet jumping enhancement by V-groove edge angle[J]. Journal of Tianjin University (Science and Technology), 2021, 54(9): 907-916. | |
30 | Boreyko J B, Srijanto B R, Nguyen T D, et al. Dynamic defrosting on nanostructured superhydrophobic surfaces[J]. Langmuir, 2013, 29(30): 9516-9524. |
31 | Enright R, Miljkovic N, Sprittles J, et al. How coalescing droplets dump[J]. ACS Nano, 2015, 8(10):10352-10362. |
32 | Yu Z Y, Zhang K X, Zhao J Y, et al. Coalescence-induced jumping of droplets on superhydrophobic substrates with a beam structure[J]. Applied Surface Science, 2022, 582: 152284. |
33 | Peng Q, Yan X, Li J Q, et al. Breaking droplet jumping energy conversion limits with superhydrophobic microgrooves[J]. Langmuir, 2020, 36(32): 9510-9522. |
34 | Pepper D W, Heinrich J C. The Finite Element Method: Basic Concepts and Applications with MATLAB, MAPLE, and COMSOL[M]. 3rd ed.Boca Raton: CRC Press, 2017. |
35 | Vahabi H, Wang W, Davies S, et al. Coalescence-induced self-propulsion of droplets on superomniphobic surfaces[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 29328-29336. |
36 | Farokhirad S, Morris J F, Lee T. Coalescence-induced jumping of droplet: inertia and viscosity effects[J]. Physics of Fluids, 2015, 27(10): 102102. |
37 | Xiao X, Huang X, Yu Z, et al. Numerical study of the coalescence-induced droplet jumping with macrotexture based on single-phase model[J]. Physics of Fluids, 2023, 35(7): 072112 |
38 | Gao S H, Yuan Z P, Wu X M. Coalescence-induced jumping of in-plane moving droplets: effects of initial velocity and sideslip angle[J]. Chemical Engineering Science, 2023, 265: 118247. |
[1] | 韩启沃, 刘永峰, 裴普成, 张璐, 姚圣卓. 工作温度对PEMFC水分布、质子传输及性能影响分析[J]. 化工学报, 2025, 76(1): 374-384. |
[2] | 邓志诚, 杨欢, 王斯民, 王家瑞. 微混燃烧器中微管结构对氢燃料掺混效果与燃烧性能影响[J]. 化工学报, 2025, 76(1): 335-347. |
[3] | 李彦, 郭红利, 苏国庆, 张建文. 加氢装置空冷器气液两相流动与冲刷腐蚀问题[J]. 化工学报, 2025, 76(1): 141-150. |
[4] | 王瀚彬, 胡帅, 毕丰雷, 李隽森, 贺来宾. 新型波纹翅片金属氢化物反应器的放氢性能有限元分析[J]. 化工学报, 2025, 76(1): 221-230. |
[5] | 陈晗, 蔡畅, 刘红, 尹洪超. 正戊醇添加剂强化喷雾冷却传热实验研究[J]. 化工学报, 2025, 76(1): 131-140. |
[6] | 刘萍, 邱雨生, 李世婧, 孙瑞奇, 申晨. 微通道内纳米流体传热流动特性[J]. 化工学报, 2025, 76(1): 184-197. |
[7] | 韩志敏, 周相宇, 张宏宇, 徐志明. 不同粗糙元结构下CaCO3污垢局部沉积特性[J]. 化工学报, 2025, 76(1): 151-160. |
[8] | 任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
[9] | 杨勇, 祖子轩, 李煜坤, 王东亮, 范宗良, 周怀荣. T型圆柱形微通道内CO2碱液吸收数值模拟[J]. 化工学报, 2024, 75(S1): 135-142. |
[10] | 黄俊豪, 庞克亮, 孙方远, 刘福军, 谷致远, 韩龙, 段衍泉, 冯妍卉. 干熄炉料钟结构对焦炭布料粒径均匀度影响的模拟研究[J]. 化工学报, 2024, 75(S1): 158-169. |
[11] | 董新宇, 边龙飞, 杨怡怡, 张宇轩, 刘璐, 王腾. 冷却条件下倾斜上升管S-CO2流动与传热特性研究[J]. 化工学报, 2024, 75(S1): 195-205. |
[12] | 郭骐瑞, 任丽媛, 陈康, 黄翔宇, 马卫华, 肖乐勤, 周伟良. 用于HTPB推进剂浆料的静态混合管数值模拟[J]. 化工学报, 2024, 75(S1): 206-216. |
[13] | 李匡奚, 于佩潜, 王江云, 魏浩然, 郑志刚, 冯留海. 微气泡旋流气浮装置内流动分析与结构优化[J]. 化工学报, 2024, 75(S1): 223-234. |
[14] | 赵振刚, 周梦瑶, 金典, 张大骋. 基于泡沫碳扩散层的直接甲醇燃料电池改性研究[J]. 化工学报, 2024, 75(S1): 259-266. |
[15] | 徐英宇, 杨国强, 彭璟, 孙海宁, 张志炳. 微界面高级氧化处理煤化工废水的研究[J]. 化工学报, 2024, 75(S1): 283-291. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 74
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 200
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||