化工学报 ›› 2025, Vol. 76 ›› Issue (S1): 453-461.DOI: 10.11949/0438-1157.20241278
• 过程安全 • 上一篇
收稿日期:2024-11-11
修回日期:2024-11-18
出版日期:2025-06-25
发布日期:2025-06-26
通讯作者:
陈建业
作者简介:彭建斌(2000—),男,硕士研究生,jianbin_peng@hust.edu.cn
Jianbin PENG(
), Ming LI, Junlong XIE, Jianye CHEN(
)
Received:2024-11-11
Revised:2024-11-18
Online:2025-06-25
Published:2025-06-26
Contact:
Jianye CHEN
摘要:
液氢接收终端运行频繁,部件复杂,存在较大的漏氢威胁。因此,对潜在液氢泄漏造成的后果进行评估是必不可少的。基于伪源模型对日本神户液氢接收终端的液氢泄漏进行了数值模拟。从扩散和爆炸超压危害两方面评估了当前终端布局下泄漏孔径及风速风向对事故后果的影响。结果表明,较大的泄漏孔径、较低的风速、沿着顺风方向存在较大型障碍物均会使氢气云体积积累得更大,亦会造成更大的爆炸超压峰值。常见工况下全局最大爆炸超压均高于0.13790 bar(1 bar=0.1 MPa),会造成房屋的中度损坏和人员的中度损伤,不过控制室处的超压均小于0.06895 bar,在安全范围内。
中图分类号:
彭建斌, 李明, 谢军龙, 陈建业. 液氢接收终端液氢泄漏扩散及爆炸超压研究[J]. 化工学报, 2025, 76(S1): 453-461.
Jianbin PENG, Ming LI, Junlong XIE, Jianye CHEN. Numerical investigation of liquid hydrogen leakage and explosion overpressure at liquid hydrogen receiving terminal[J]. CIESC Journal, 2025, 76(S1): 453-461.
| 峰值超压 / bar | 对建筑物损伤 | 对人员损伤 |
|---|---|---|
| 0.06895 | 门窗玻璃损坏 | 碎片造成轻微伤害 |
| 0.13790 | 对房屋造成中度损坏(如门窗吹落,屋顶严重损坏) | 被碎片和飞落物砸伤 |
| 0.20680 | 住宅结构倒塌 | 重伤或有死亡可能 |
| 0.34470 | 大多数建筑物倒塌 | 人员死亡概率增加 |
| 0.68950 | 钢筋混凝土建筑物严重损坏 | 大多数人员死亡 |
| 1.37000 | 钢筋混凝土建筑物被推倒 | 死亡率接近100% |
表1 超压对建筑物及附近人员的影响[30]
Table 1 Effects of overpressure on buildings and people in the vicinity[30]
| 峰值超压 / bar | 对建筑物损伤 | 对人员损伤 |
|---|---|---|
| 0.06895 | 门窗玻璃损坏 | 碎片造成轻微伤害 |
| 0.13790 | 对房屋造成中度损坏(如门窗吹落,屋顶严重损坏) | 被碎片和飞落物砸伤 |
| 0.20680 | 住宅结构倒塌 | 重伤或有死亡可能 |
| 0.34470 | 大多数建筑物倒塌 | 人员死亡概率增加 |
| 0.68950 | 钢筋混凝土建筑物严重损坏 | 大多数人员死亡 |
| 1.37000 | 钢筋混凝土建筑物被推倒 | 死亡率接近100% |
| 1 | Geipel-Kern A. 全球氢能技术发展现状及未来展望[J]. 流程工业, 2024(5): 26-29, 31. |
| Geipel-Kern A. Current status and future prospects of global hydrogen energy technology development[J]. Process, 2024(5): 26-29, 31. | |
| 2 | Kawasaki Completes World's First Liquefied Hydrogen Receiving Terminal Kobe LH 2 Terminal (Hy touch Kobe)[EB/OL]. [2024-11-12]. . |
| 3 | Ishimoto J, Shimada S. Coupled computing for reactive hydrogen leakage phenomena with crack propagation in a pressure tank[J]. International Journal of Hydrogen Energy, 2022, 47(4): 2735-2758. |
| 4 | Witcofski R D, Chirivella J E. Experimental and analytical analyses of the mechanisms governing the dispersion of flammable clouds formed by liquid hydrogen spills[J]. International Journal of Hydrogen Energy, 1984, 9(5): 425-435. |
| 5 | Willoughby D, Royle M. Releases of unignited liquid hydrogen[Z]. 2012. |
| 6 | Statharas J C, Venetsanos A G, Bartzis J G, et al. Analysis of data from spilling experiments performed with liquid hydrogen[J]. Journal of Hazardous Materials, 2000, 77(1/2/3): 57-75. |
| 7 | Hall J E, Hooker P, Willoughby D. Ignited releases of liquid hydrogen: safety considerations of thermal and overpressure effects[J]. International Journal of Hydrogen Energy, 2014, 39(35): 20547-20553. |
| 8 | Shu Z Y, Lei G, Liang W Q, et al. Experimental investigation of hydrogen dispersion characteristics with liquid helium spills in moist air[J]. Process Safety and Environmental Protection, 2022, 162: 923-931. |
| 9 | Liu Y L, Liu Z, Wei J J, et al. Evaluation and prediction of the safe distance in liquid hydrogen spill accident[J]. Process Safety and Environmental Protection, 2021, 146: 1-8. |
| 10 | Holborn P G, Benson C M, Ingram J M. Modelling hazardous distances for large-scale liquid hydrogen pool releases[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23851-23871. |
| 11 | 厉劲风, 方凯, 许好好, 等. 大空间液氢射流泄漏扩散特性[J]. 化工学报, 2022, 73(11): 5177-5185. |
| Li J F, Fang K, Xu H H, et al. Diffusion features of jet leakage with liquid hydrogen in large space[J]. CIESC Journal, 2022, 73(11): 5177-5185. | |
| 12 | Liu Y L, Wei J J, Liu Z, et al. Dilution of flammable vapor cloud formed by liquid hydrogen spill[J]. International Journal of Hydrogen Energy, 2020, 45(7): 5067-5072. |
| 13 | Liu Y L, Liu Z, Wei J J, et al. Spread characteristics of hydrogen vapor cloud for liquid hydrogen spill under different source conditions[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4606-4613. |
| 14 | 沈亚皓, 王登, 吕洪, 等. 开阔空间下风速对液氢泛溢后氢气云团扩散行为特征及事故后果的影响研究[J]. 真空与低温, 2024, 30(4): 436-447. |
| Shen Y H, Wang D, Lv H, et al. Influence of wind speed on the diffusion characteristics and consequences of hydrogen clouds following liquid hydrogen spillage[J]. Vacuum and Cryogenics, 2024, 30(4): 436-447. | |
| 15 | 丁鹏, 陈威, 任慧忠, 等. 发射场液氢泄漏扩散计算及危险性分析[J]. 火箭推进, 2018, 44(4): 78-84. |
| Ding P, Chen W, Ren H Z, et al. Calculation and risk analysis of liquid hydrogen leakage and diffusion in launching site[J]. Journal of Rocket Propulsion, 2018, 44(4): 78-84. | |
| 16 | Liu K, He C X, Yu Y Z, et al. A study of hydrogen leak and explosion in different regions of a hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2023, 48(37): 14112-14126. |
| 17 | 王峰, 俞华栋, 厉劲风, 等. 液氢加氢站泄漏爆炸事故模拟及分析[J]. 低温与特气, 2023, 41(1): 40-46. |
| Wang F, Yu H D, Li J F, et al. Simulation and analysis of leakage and explosion accident in liquid hydrogen hydrogenation station[J]. Low Temperature and Specialty Gases, 2023, 41(1): 40-46. | |
| 18 | Yuan W H, Li J F, Zhang R P, et al. Numerical investigation of the leakage and explosion scenarios in C h i n a ' s first liquid hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2022, 47(43): 18786-18798. |
| 19 | Sun R F, Pu L, Yu H S, et al. Modeling the diffusion of flammable hydrogen cloud under different liquid hydrogen leakage conditions in a hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2022, 47(61): 25849-25863. |
| 20 | Sun R F, Pu L, Yu H S, et al. Investigation of the hazardous area in a liquid hydrogen release with or without fence[J]. International Journal of Hydrogen Energy, 2021, 46(73): 36598-36609. |
| 21 | Wang X Y, Li B, Han B, et al. Explosion of high pressure hydrogen tank in fire: mechanism, criterion, and consequence assessment[J]. Journal of Energy Storage, 2023, 72: 108455. |
| 22 | Li H W, Rui S C, Guo J, et al. Effect of ignition position on vented hydrogen-air deflagration in a 1 m3 vessel[J]. Journal of Loss Prevention in the Process Industries, 2019, 62: 103944. |
| 23 | GexCon. FLACS 10.6 Users Manual[M]. OsCo: GexCon AS, 2017. |
| 24 | Giannissi S G, Venetsanos A G, Markatos N, et al. CFD modeling of hydrogen dispersion under cryogenic release conditions[J]. International Journal of Hydrogen Energy, 2014, 39(28): 15851-15863. |
| 25 | Giannissi S G, Venetsanos A G, Markatos N, et al. Numerical simulation of LNG dispersion under two-phase release conditions[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1): 245-254. |
| 26 | Leachman J W, Jacobsen R T, Penoncello S G, et al. Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen[J]. Journal of Physical and Chemical Reference Data, 2009, 38(3): 721-748. |
| 27 | Shea J. Perry's Chemical Engineer's Hanabook—7th edition[book review][J]. IEEE Electrical Insulation Magazine, 2000, 16: 34-35. |
| 28 | Ichard M, Hansen O R, Middha P, et al. CFD computations of liquid hydrogen releases[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17380-17389. |
| 29 | Tanaka T, Azuma T, Evans J A, et al. Experimental study on hydrogen explosions in a full-scale hydrogen filling station model[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2162-2170. |
| 30 | Glasstone S, Dolan P J. The Effects of Nuclear Weapons[M]. Washington, D.C.: US Department of Defense, 1977. |
| [1] | 齐昊, 王玉杰, 李申辉, 邹琦, 刘轶群, 赵之平. 双金属Co/Zn-ZIFs中C3H6和C3H8吸附和扩散行为分子模拟研究[J]. 化工学报, 2025, 76(5): 2313-2326. |
| [2] | 林纬, 杜建, 姚晨, 朱家豪, 汪威, 郑小涛, 徐建民, 喻九阳. 电化学水软化过程中离子输运与成核机理研究[J]. 化工学报, 2025, 76(4): 1788-1799. |
| [3] | 严珅, 席悦, 张盛宇, 陈晓东, 吴铎. 基于IGC-ZLC法测定有机蒸气在ZSM-5中的晶内扩散系数[J]. 化工学报, 2025, 76(3): 1076-1083. |
| [4] | 张恒, 魁殿禄, 常虹, 詹志刚. 机械应力对气体扩散层界面传输特性影响[J]. 化工学报, 2025, 76(2): 637-644. |
| [5] | 赵振刚, 周梦瑶, 金典, 张大骋. 基于泡沫碳扩散层的直接甲醇燃料电池改性研究[J]. 化工学报, 2024, 75(S1): 259-266. |
| [6] | 吕方明, 包志铭, 王博文, 焦魁. 气体扩散层侵入流道对燃料电池水管理影响研究[J]. 化工学报, 2024, 75(8): 2929-2938. |
| [7] | 贾娟, 杨扬, 朱恂, 叶丁丁, 陈蓉, 廖强. 用于伤口敷料的水凝胶电刺激释药性能[J]. 化工学报, 2024, 75(7): 2700-2708. |
| [8] | 黄静茹, 陈佳轩, 张群锋, 阮晋, 朱来, 叶光华, 周兴贵. ZSM-5分子筛结构对苯烷基化反应性能影响的数值模拟研究[J]. 化工学报, 2024, 75(7): 2544-2555. |
| [9] | 苏彬, 董浩伟, 罗振敏, 邓军, 王涛, 程方明. 气粉两相体系爆炸动力学特性及机理研究进展[J]. 化工学报, 2024, 75(6): 2109-2122. |
| [10] | 张帅, 喻健良, 丁建飞, 闫兴清. 气流输运工况玉米淀粉爆炸火焰传播与压力特性实验研究[J]. 化工学报, 2024, 75(5): 2072-2080. |
| [11] | 秦晗淞, 李国梁, 闫昊, 冯翔, 刘熠斌, 陈小博, 杨朝合. 多级孔ZSM-5分子筛中油酸甲酯催化裂解吸附和扩散行为模拟研究[J]. 化工学报, 2024, 75(5): 1870-1881. |
| [12] | 肖拥君, 时兆翀, 万仁, 宋璠, 彭昌军, 刘洪来. 反向传播神经网络用于预测离子液体的自扩散系数[J]. 化工学报, 2024, 75(2): 429-438. |
| [13] | 朱宇豪, 谢福寿, 高婉丽, 卜玉, 刘瑞敏, 厉彦忠. 车载液氢瓶不同局部大热流位置对自增压规律影响研究[J]. 化工学报, 2024, 75(12): 4723-4735. |
| [14] | 付敏, 陈子健, 汤帅, 钱锡亮, 危增曦, 邹昀, 童张法. PVA杂化膜中小分子吸附和扩散行为的分子模拟[J]. 化工学报, 2024, 75(11): 4152-4161. |
| [15] | 侯宝林, 韩若曦, 王晓东. 催化剂微纳孔道内液体推进剂流动与分解反应过程研究[J]. 化工学报, 2024, 75(11): 4254-4263. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号