[1] |
Mao Zong Qiang (毛宗强). Popular lectures on hydrogen energy (2) [J]. Solar Energy (太阳能), 2007, 28 (2): 20-22
|
[2] |
Shi Yunwei (史云伟), Liu Jin (刘瑾). Development in the research of hydrogen production processes by natural gas [J]. Chemical Industry Times (化工时刊), 2009, 23(3): 59-61
|
[3] |
Sartbaeva A, Kuznetsov V L, Wells S A, Edwards P P. Hydrogen nexus in a sustainable energy future [J]. Energy & Environment Science, 2008, 1 (1): 79-85
|
[4] |
Seo J G, Youn M H, Jung J C, Song I K. Effect of preparation method of mesoporous Ni-Al2O3 catalysts on their catalytic activity for hydrogen production by steam reforming of liquefied natural gas (LNG)[J]. International Journal of Hydrogen Energy, 2009, 34 (13): 5409-5416
|
[5] |
Gokaliler F, Caglayan B S, Onsan Z I, Aksoylu A E. Hydrogen production by autothermal reforming of LPG for PEM fuel cell applications [J]. International Journal of Hydrogen Energy, 2008, 33 (4): 1383-1391
|
[6] |
Schädel B T, Deutschmann O. Steam reforming of natural gas on noble-metal based catalysts: predictive modeling [J]. Studies in Surface Science and Catalysis, 2007, 167 (1): 207-212
|
[7] |
Gao Zhijun (高志军), Zhang Ruigang (张瑞刚), Du Ran (杜然), Zhang Zhihai (张志海). Utilization of cake oven gas after hydrogen production [J]. Fuel & Chemical Processes (燃料与化工), 2007, 38 (5): 41-43
|
[8] |
Keramiotis C, Vourliotakis G, Skevis G M A, Founti M A, Esarte C, Sánchez N E, Millera A, Bilbao R, Alzueta M U. Experimental and computational study of methane mixtures pyrolysis in a flow reactor under atmospheric pressure [J]. Energy, 2012, 43 (1): 103-110
|
[9] |
Dente M, Bozzano G, Faravelli T, Marongiu A, Pierucci S, Ranzi E. Kinetic modelling of pyrolysis processes in gas and condensed phase [J]. Advances in Chemical Engineering, 2007, 32 (1): 151-166
|
[10] |
Cortright R D, Watwe R M, Spiewak B E, Dumesic J A. Kinetics of ethane hydrogenolysis over supported platinum catalysts [J]. Catalysis Today, 1999, 53 (3): 395-406
|
[11] |
Faria W L, Perez C A, César D V, Dieguez L C, Schmal M. In situ characterizations of Pd/Al2O3 and Pd/CeO2/Al2O3 catalysts for oxidative steam reforming of propane [J]. Applied Catalysis B: Environmental, 2009, 92 (1): 217-224
|
[12] |
Gökaliler F, Göcmen B A, Aksoylu A E. The effect of Ni:Pt ratio on oxidative steam reforming performance of Pt-Ni/Al2O3 catalyst [J]. International Journal of Hydrogen Energy, 2008, 33 (16): 4358-4366
|
[13] |
Pino L, Vita A, Cipitì F, Laganà M, Recupero V. Performance of Pt/CeO2 catalyst for propane oxidative steam reforming [J]. Applied Catalysis A: General, 2006, 306 (1): 68-77
|
[14] |
Silberova B, Venvik H J, Holmen A. Production of hydrogen by short contact time partial oxidation and oxidative steam reforming of propane [J]. Catalysis Today, 2005, 99 (1): 69-76
|
[15] |
Gökaliler F, Onsan Z I, Aksoylu A E. Power-law type rate equation for propane ATR over Pt-Ni/Al2O3 catalyst [J]. International Journal of Hydrogen Energy, 2012, 37 (13): 10425-10429
|
[16] |
Faria W L, Dieguez L C, Schmal M. Autothermal reforming of propane for hydrogen production over Pd/CeO2/Al2O3 catalysts [J]. Applied Catalysis B: Environmental, 2008, 85 (1): 77-85
|
[17] |
Jensen M B, Raberg L B, Sjastad A O, Olsbye U. Mechanistic study of the dry reforming of propane to synthesis gas over a Ni/Mg(Al)O catalyst [J]. Catalysis Today, 2009, 145 (1): 114-120
|
[18] |
Rakib M A, Grace J R, Lim C J, Elnashaie S S, Ghiasi B. Steam reforming of propane in a fluidized bed membrane reactor for hydrogen production [J]. International Journal of Hydrogen Energy, 2010, 35 (12): 6276-6290
|
[19] |
Wang X D, Wang N, Zhao J, Wang L. Thermodynamic analysis of propane dry and steam reforming for synthesis gas or hydrogen production [J]. International Journal of Hydrogen Energy, 2010, 35 (23): 12800-12807
|
[20] |
Xiong Ganghua (熊刚华), Li Ping (李平), Zhang Shiyuan (张世渊), Zhou Xinggui (周兴贵), Pan Xiangmin (潘相敏), Zhou Wei (周伟). Thermodynamics of steam reforming of several hydrocarbons and carbohydrates[J]. Chemical Reaction Engineering and Technology(化学反应工程与工艺), 2010, 26 (2): 104-111
|
[21] |
Schädel B T, Duisberg M, Deutschmann O. Steam reforming of methane, ethane, propane, butane, and natural gas over a rhodium-based catalyst[J]. Catalysis Today, 2009, 142 (1): 42-51
|
[22] |
Tanaka Y, Kato T. Reforming of methane, ethylene, and desulfurized kerosene over Ni-8YSZ catalyst [J]. Applied Catalysis A: General, 2008, 348 (2): 229-235
|
[23] |
Graf P O, Mojet B L, Lefferts L. The effect of potassium addition to Pt supported on YSZ on steam reforming of mixtures of methane and ethane [J]. Applied Catalysis A: General, 2009, 362 (1): 88-94
|
[24] |
Hong R F, Lai M P, Chang Y P, Yu J P, Hsieh S F. Plasma-assisted catalytic reforming of propane and an assessment of its applicability on vehicles [J]. International Journal of Hydrogen Energy, 2009, 34 (15): 6280-6289
|
[25] |
Graf P O, Mojet B L, Ommen J G V, Lefferts L. Comparative study of steam reforming of methane, ethane and ethylene on Pt, Rh and Pd supported on yttrium-stabilized zirconia [J]. Applied Catalysis A: General, 2007, 332 (2): 310-317
|
[26] |
Aartun I, Silberova B, Venvik H, Pfeifer P, Görke O, Schubert K, Holmen A. Hydrogen production from propane in Rh-impregnated metallic microchannel reactors and alumina foams [J]. Catalysis Today, 2005, 105 (3): 469-478
|
[27] |
Wu S F, Li L B, Zhu Y Q, Wang X Q. A micro-sphere catalyst complex with nano CaCO3 precusor for hydrogen production used in ReSER process [J]. Engineering Sciences, 2010, 8 (1): 22-26
|
[28] |
Hufton J R, Mayorga S, Sircar S. Sorption-enhanced reaction process for hydrogen production [J]. AIChE Journal, 1999, 45 (2): 248-256
|
[29] |
Dupont V, Ross A B, Knight E, Hanley I, Twigg M V. Production of hydrogen by unmixed steam reforming of methane [J]. Chemical Engineering Science, 2008, 63 (11): 2966-2979
|
[30] |
Lyon R K, Cole J A. Unmixed combustion: an alternative to fire [J]. Combustion and Flame, 2000, 121 (1): 249-261
|
[31] |
Ryden M, Ramos P. H2 production with CO2 capture by sorption enhanced chemical-looping reforming using NiO as oxygen carrier and CaO as CO2 sorbent [J]. Fuel Processing Technology, 2012, 96 (1): 27-36
|
[32] |
Feng H Z, Lan P Q, Wu S F. A study on the stability of a NiO-CaO/Al2O3 complex catalyst by La2O3 modification for hydrogen production [J]. International Journal of Hydrogen Energy, 2012, 37 (19): 14161-14166
|
[33] |
Wu S F, Wang L L. Improvement of the stability of a ZrO2-modified Ni-nano CaO sorption complex catalyst for ReSER hydrogen production [J]. International Journal of Hydrogen Energy, 2010, 35 (13): 6518-6524
|
[34] |
Kim J N, Ko C H, Yi K B. Sorption enhanced hydrogen production using one-body CaO-Ca12Al14O33-Ni composite as catalytic absorbent [J]. International Journal of Hydrogen Energy, 2013, 38 (14): 6072-6078
|
[35] |
Broda M, Manovic V, Imtiaz Q, Kierzkowska A M, Anthony E J, Müller C R. High-purity hydrogen via the sorption-enhanced steam methane reforming reaction over a synthetic CaO-based sorbent and a Ni catalyst [J]. Environmental Science & Technology, 2013, 47 (11): 6007-6014
|
[36] |
Seval G, Timur D. Sorption-enhanced reforming of ethanol over Ni-and Co-incorporated MCM-41 type catalysts [J]. Industrial & Engineering Chemistry Research, 2012, 51 (26): 8796-8805
|
[37] |
Cunha A F, Wu Y J, Diaz Alvarado F A, Santos J C, Vaidya P D, Rodrigues A E. Steam reforming of ethanol on a Ni/Al2O3 catalyst coupled with a hydrotalcite-like sorbent on a multilayer pattern for CO2 uptake [J]. The Canadian Journal of Chemical Engineering, 2012, 90 (6): 1514-1526
|
[38] |
Virginia C M, Miguel E B, Miguel M Z, Jesu’s S G, Alejandro L O. Absorption enhanced reforming of light alcohols (methanol and ethanol) for the production of hydrogen: thermodynamic modeling [J]. International Journal of Hydrogen Energy, 2012, 37 (9): 1-15
|
[39] |
Alvarado F D, Gracia F. Oxidative steam reforming of glycerol for hydrogen production: thermodynamic analysis including different carbon deposits representation and CO2 adsorption [J]. International Journal of Hydrogen Energy, 2012, 37 (19): 14820-14830
|
[40] |
Li Y H, Wang W J, Chen B H, Cao Y Y. Thermodynamic analysis of hydrogen production via glycerol steam reforming with CO2 adsorption [J]. International Journal of Hydrogen Energy, 2010, 35 (15): 7768-7777
|
[41] |
Wang X D, Wang N, Wang L. Hydrogen production by sorption enhanced steam reforming of propane: a thermodynamic investigation [J]. International Journal of Hydrogen Energy, 2011, 36 (1): 466-472
|
[42] |
Wu S F, Lan P Q. A kinetic model of nano-CaO reactions with CO2 in a sorption complex catalyst [J]. AIChE Journal, 2012, 58 (5): 1570-11577
|
[43] |
Shi Q, Wu S F. Properties of SiO2 coated nano SiO2/CaCO3 sorbents by precipitation method [J]. CIESC Journal (化工学报), 2009, 60 (2): 507-513
|
[44] |
Lwin Y, Daud W R W, Mohamad A B, Yaakob Z. Hydrogen production from steam methanol reforming: thermodynamic analysis [J]. International Journal of Hydrogen Energy, 2000, 25 (1): 47-53
|
[45] |
Vasudeva K, Mitra N, Umasankar P, Dhingra S C. Steam reforming of ethanol for hydrogen production: thermodynamic analysis [J]. International Journal of Hydrogen Energy, 1996, 21 (1): 13-18
|