[1] |
Serp P, Figueiredo J L. Carbon Materials for Catalysis[M]. Hoboken: Wiley, 2009
|
[2] |
Machado B F, Serp P. Graphene-based materials for catalysis[J]. Catal. Sci. Technol., 2012, 2: 54-75
|
[3] |
Zhu J, Holmen A, Chen D. Carbon nanomaterials in catalysis: proton affinity, chemical and electronic properties, and their catalytic consequences[J]. ChemCatChem, 2013, 5: 378-401
|
[4] |
Figueiredo J L, Pereira M F R. The role of surface chemistry in catalysis with carbons[J]. Catal. Today, 2010, 150: 2-7
|
[5] |
Su D S, Perathoner S, Centi G. Nanocarbons for the development of advanced catalysts[J]. Chem. Rev., 2013, 113: 5782-5816
|
[6] |
Bitter J H. Nanostructured carbons in catalysis a Janus material-industrial applicability and fundamental insights[J]. J. Mater. Chem., 2010, 20: 7312-7321
|
[7] |
Su D S, Zhang J, Frank B, Thomas A, Wang X, Paraknowitsch J, Schlögl R. Metal-free heterogeneous catalysis for sustainable chemistry[J]. ChemSusChem, 2010, 3: 169-180
|
[8] |
Yu D, Nagelli E, Du F, Dai L. Metal-free carbon nanomaterials become more active than metal catalysts and last longer[J]. J. Phys. Chem. Lett., 2010, 1: 2165-2173
|
[9] |
Zhang J, Liu X, Blume R, Zhang A, Schlögl R, Su D S. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane[J]. Science, 2008, 322: 73-77
|
[10] |
Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications[J]. ACS Catalysis, 2012, 2: 781-794
|
[11] |
Liu H T, Liu Y Q, Zhu D B. Chemical doping of graphene[J]. J. Mater. Chem., 2011, 21: 3335-3345
|
[12] |
Ewels C P, Glerup M. Nitrogen doping in carbon nanotubes[J]. J. Nanosci. Nanotech., 2005, 5: 1345-1363
|
[13] |
Ayala P, Arenal R, Rümmeli M, Rubio A, Pichler T. The doping of carbon nanotubes with nitrogen and their potential applications[J]. Carbon, 2010, 48: 575-586
|
[14] |
Gong K, Du F, Xia Z, Durstock M, Dai L, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323: 760-764
|
[15] |
Liang J, Jiao Y, Jaroniec M, Qiao S Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance[J]. Angew. Chem. Int. Ed., 2012, 51: 11496-11500
|
[16] |
Yu S, Zheng W, Wang C, Jiang Q. Nitrogen/boron doping position dependence of the electronic properties of a triangular graphene[J]. ACS Nano, 2010, 4: 7619-7629
|
[17] |
Zhao Y, Yang L J, Chen S, Wang X Z, Ma Y W, Wu Q, Jiang Y F, Qian W J, Hu Z. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes? [J]. J. Am. Chem. Soc., 2013, 135: 1201-1204
|
[18] |
Talla J A. First principles modeling of boron-doped carbon nanotube sensors[J]. Phys. B: Condes. Matt., 2012, 407: 966-970
|
[19] |
Cao Y H, Yu H, Tan J, Peng F, Wang H J, Li J, Zheng W X, Wong N B. Nitrogen-, phosphorous- and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane[J]. Carbon, 2013, 57: 433-442
|
[20] |
Schwartz V, Xie H, Meyer H M, Overbury S H, Liang C D. Oxidative dehydrogenation of isobutane on phosphorous-modified graphitic mesoporous carbon[J]. Carbon, 2011, 49: 659-668
|
[21] |
Christian E B, Lødeng R, Holmen A. A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts[J]. Appl. Catal. A, 2008, 346: 1-27
|
[22] |
Fierro J L G. Catalysis in C1 chemistry — future and prospect[J]. Catal. Lett., 1993, 22: 67-91
|
[23] |
Alvarez-Galvan M C, Mota N, Ojeda M, Rojas S, Navarro R M, Fierro J L G. Direct methane conversion routes to chemicals and fuels[J]. Catal. Today, 2011, 171: 15-23
|
[24] |
Li B, Su D S. First-principles studies of the activation of oxygen molecule and its role in partial oxidation of methane on boron-doped single-walled carbon nanotubes[J]. J. Phys. Chem. C, 2013, 117: 17485-17492
|
[25] |
Grabowski R. Kinetics of oxidative dehydrogenation of C2—C3 alkanes on oxide catalysts[J]. Catal. Rev. Sci. Eng., 2006, 48: 199-268
|
[26] |
Kung H H. Oxidative dehydrogenation of light (C2 to C6) alkanes[J]. Adv. Catal., 1994, 40: 1-38
|
[27] |
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999, 59: 1758
|
[28] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77: 3865-3868
|
[29] |
Henkelman G, Uberuaga B P, Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. J. Chem. Phys., 2000, 113: 9901-9904
|
[30] |
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput. Matt. Sci., 1996, 6: 15-50
|
[31] |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996, 54: 11169
|
[32] |
Savin A, Becke A D, Flad J, Nesper R, Preuss H, von Schnering H G. A new look at electron localization[J]. Angew. Chem. Int. Ed., 1991, 30: 409-412
|
[33] |
Tang W, Hu Z P, Wang M J, Stucky G D, Metiu H, McFarland E W. Methane complete and partial oxidation catalyzed by Pt-doped CeO2[J]. J. Catal., 2010, 273: 125-137
|
[34] |
Hu X, Zhou Z, Lin Q, Wu Y, Zhang Z. High reactivity of metal-free nitrogen-doped carbon nanotube for the C—H activation[J]. Chem. Phys. Lett., 2011, 503: 287-291
|
[35] |
Frank B, Zhang J, Blume R, Schlögl R, Su D. Heteroatoms increase the selectivity in oxidative dehydrogenation reactions on nanocarbons[J]. Angew. Chem. Int. Ed., 2009, 48: 6913-6917
|
[36] |
Li B, Su D. Theoretical studies on ethylene selectivity in the oxidative dehydrogenation reaction on undoped and doped nanostructured carbon catalysts[J]. Chem. Asian. J., 2013, 8: 2605-2608
|
[37] |
Zhou K, Li B, Zhang Q, Huang J Q, Tian G L, Jia J C, Zhao M Q, Luo G H, Su D S, Wei F. The catalytic pathways of hydrohalogenation over metal-free nitrogen-doped carbon nanotubes[J]. ChemSusChem, 2014, 7: 723-728
|
[38] |
Lu X, Chen Z F. Curved Pi-conjugation, aromaticity, and the related chemistry of small fullerenes (Chem. Rev., 2005, 105: 3643-3696
|
[39] |
Hu X, Wu Y, Li H, Zhang Z. Adsorption and activation of O2 on nitrogen-doped carbon nanotubes[J]. J. Phys. Chem. C, 2010, 114: 9603-9607
|
[40] |
Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen X, Huang S. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS Nano, 2012, 6: 205-211
|
[41] |
Montes-Moran M A, Menendez J A, Fuente E, Suarez D. Contribution of the basal planes to carbon basicity: an ab initio study of the H3O+-Pi interaction in cluster models[J]. J. Phys. Chem. B, 1998, 102: 5595-5601
|
[42] |
Suarez D, Menendez J A, Fuente E, Montes-Moran M A. Contribution of pyrone-type structures to carbon basicity: an ab initio study[J]. Langmuir, 1999, 15: 3897-3904
|
[43] |
Menendez J A, Suarez D, Fuente E, Montes-Moran M A. Contribution of pyrone-type structures to carbon basicity: theoretical evaluation of the pK(a) of model compounds[J]. Carbon, 1999, 37: 1002-1006
|
[44] |
Arrigo R, Havecker M, Wrabetz S, Blume R, Lerch M, McGregor J, Parrott E P J, Zeitler J A, Gladden L F, Knop-Gericke A, Schlögl R, Su D S. Tuning the acid/base properties of nanocarbons by functionalization via amination[J]. J. Am. Chem. Soc., 2010, 132: 9616-9630
|
[45] |
Yuan C F, Chen W F, Yan L F. Amino-grafted graphene as a stable and metal-free solid basic catalyst[J]. J. Mater. Chem., 2012, 22: 7456-7460
|
[46] |
Villa A, Tessonnier J P, Majoulet O, Su D S, Schlögl R. Transesterification of triglycerides using nitrogen-functionalized carbon nanotubes[J]. ChemSusChem, 2010, 3: 241-245
|