化工学报 ›› 2015, Vol. 66 ›› Issue (7): 2370-2376.DOI: 10.11949/j.issn.0438-1157.20141397
许丹1,2, 肖恩荣2, 徐栋2, 吴振斌2
收稿日期:
2014-09-17
修回日期:
2014-11-28
出版日期:
2015-07-05
发布日期:
2015-07-05
通讯作者:
吴振斌, 肖恩荣
基金资助:
国家自然科学基金青年科学基金项目(51308530);国家科技支撑计划课题项目(2012BAJ21B03);湖北省自然科学基金项目(2013CFB419)。
XU Dan1,2, XIAO Enrong2, XU Dong2, WU Zhenbin2
Received:
2014-09-17
Revised:
2014-11-28
Online:
2015-07-05
Published:
2015-07-05
Supported by:
supported by the National Natural Science Foundation of China (51308530), the National Science and Technology Support Program (2012BAJ21B03) and the Natural Science Foundation of Hubei Province (2013CFB419).
摘要:
将微生物燃料电池(microbial fuel cell, MFC)与人工湿地(constructed wetland, CW)相结合是近几年来出现的一种新型产能及废水净化工艺。在综述CW-MFC耦合系统产电机理及其发展的基础上进一步分析讨论了当前研究中影响系统性能的组成要素(植物、微生物、电极及分隔材料)和运行参数(碳源、氧化还原电位及水力停留时间)两个方面,最后总结了当前尚未解决的关键问题,对今后耦合系统的潜在应用进行了展望。
中图分类号:
许丹, 肖恩荣, 徐栋, 吴振斌. 微生物燃料电池与人工湿地耦合系统研究进展[J]. 化工学报, 2015, 66(7): 2370-2376.
XU Dan, XIAO Enrong, XU Dong, WU Zhenbin. Embedding microbial fuel cell into constructed wetland systems for electricity production and wastewater treatment: state-of-the-art[J]. CIESC Journal, 2015, 66(7): 2370-2376.
[1] | Logan B E. Simultaneous wastewater treatment and biological electricity generation [J]. Water Science & Technology, 2005, 52(1): 31-37. |
[2] | Pham T H, Rabaey K, Aelterman P, et al. Microbial fuel cells in relation to conventional anaerobic digestion technology [J]. Engineering in Life Sciences, 2006, 6(3): 285-292. |
[3] | Zhang B G, Zhao H Z, Zhou S G, Shi C, Wang C, Ni J. A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity [J]. Bioresour. Technol., 2009, 100(23): 5687-5693. |
[4] | Liu X W, Wang Y P, Huang Y X, Sun X F, Sheng G P, Zeng R J, Li F, Dong F, Wang S G, Tong Z H, Yu H Q. Integration of a microbial fuel cell with activated sludge process for energy-saving wastewater treatment: taking a sequencing batch reactor as an example [J]. Biotechnol. Bioeng., 2011, 108(6): 1260-1267. |
[5] | Fu C C, Su C H, Hung T C, et al. Effects of biomass weight and light intensity on the performance of photosynthetic microbial fuel cells with Spirulina platensis [J]. Bioresour. Technol., 2009, 100(18): 4183-4186. |
[6] | Strik D P, Hamelers H V M, Buisman C J N. Solar energy powered microbial fuel cell with a reversible bioelectrode [J]. Environ. Sci. Technol., 2009, 44(1): 532-537. |
[7] | Schamphelaire D L, Bossche L V, Dang H S, Höfte M, Boon N, Rabaey K, Verstraete W. Microbial fuel cells generating electricity from rhizodeposits of rice plants [J]. Environ. Sci. Technol., 2008, 42(8): 3053-3058. |
[8] | Kadlec R H, Wallace S. Treatment Wetlands [M]. Boca Raton: CRC Press, 2008: 809-810. |
[9] | Kivaisi A K. The potential for constructed wetlands for wastewater treatment and reuse in developing countries: a review [J]. Eco. Eng., 2001, 16(4): 545-560. |
[10] | Song Zhiwen(宋志文), Bi Xuejun(毕学军), Cao Jun(曹军). Application of constructed wetlands in sewage treatment in small cities in China [J]. Chinese Journal of Ecology(生态学学报), 2003, 22(3): 74-78. |
[11] | Kuzyakov Y, Domanski G. Carbon input by plants into the soil. Review [J]. J. Plant Nutr. Soil Sci., 2000, 163(4): 421-31. |
[12] | Aulakh M S, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H. Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars [J]. Plant Biology, 2001, 3(2): 139-148. |
[13] | Paterson E, Hodge A, Thornton B, Millard P, Killham K. Carbon partitioning and rhizosphere C-flow in Lolium perenne as affected by CO2 concentration, irradiance and below-ground conditions [J]. Global Change Biol., 1999, 5(6): 669-678. |
[14] | Deng H, Chen Z, Zhao F. Energy from plants and microorganisms: progress in plant-microbial fuel cells [J]. ChemSusChem, 2012, 5(6): 1006-1011. |
[15] | Newman D K, Kolter R. A role for excreted quinones in extracellular electron transfer [J]. Nature, 2000, 405(6782): 94-97. |
[16] | Nealson K H, Saffarini D. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation [J]. Annu. Rev. Microbiol., 1994, 48(1): 311-343. |
[17] | Reguera G, McCarthy K D, Mehta T, et al. Extracellular electron transfer via microbial nanowires [J]. Nature, 2005, 435(7045): 1098-1101. |
[18] | Liu H, Logan B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane [J]. Environ. Sci. Technol., 2004, 38(14): 4040-4046. |
[19] | Sukkasem C, Xu S, Park S, Boonsawangb P, Liu H. Effect of nitrate on the performance of single chamber air cathode microbial fuel cells [J]. Water Res., 2008, 42(19): 4743-4750. |
[20] | Clauwaert P, Rabaey K, Aelterman P, Schamphelaire L D, Pham T H, Boeckx P, Boon N, Verstraete W. Biological denitrification in microbial fuel cells [J]. Environ. Sci. Technol., 2007, 41(9): 3354-3360. |
[21] | Chen Z, Huang Y, Liang J, Zhao F, Zhu Y G. A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere [J]. Bioresour. Technol., 2012, 108: 55-59. |
[22] | Liu S T, Song H L, Wei S Z, Yang F, Li X. Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland — microbial fuel cell systems [J]. Bioresour. Technol., 2014, 166: 575-583. |
[23] | Kaku N, Yonezawa N, Kodama Y, Watanabe K. Plant/microbe cooperation for electricity generation in a rice paddy field [J]. Appl. Microbiol. Biotechnol., 2008, 79(1): 43-49. |
[24] | Helder M, Strik D P, Hamelers H V, Kuhn A J, Blok C, Buisman C J. Concurrent bio-electricity and biomass production in three Plant-Microbial Fuel Cells using Spartina anglica, Arundinella anomala and Arundo donax [J]. Bioresour. Technol., 2010, 101(10): 3541-3547. |
[25] | Strik D P, Snel J F H, Buisman C J N. Green electricity production with living plants and bacteria in a fuel cell [J]. In. J. Energ. Res., 2008, 32(9): 870-876. |
[26] | Li X, Song H, Xiang W, Wu L. Electricity generation during wastewater treatment by a microbial fuel cell coupled with constructed wetland [J]. Journal of Southeast University, 2012, 28(2): 175-178. |
[27] | Xia Shibin(夏世斌), Pan Rong(潘蓉), Zhang Ning(张宁), Huang Faming(黄发明), Dai Xi(代西), Wu Zhenbin(吴振斌). Study on vertical flow constructed wetland embedded with fuel cell treating micro-polluted source water [J]. Journal of Wuhan University of Technology(武汉理工大学学报), 2012, 34(2):105-109. |
[28] | Yadav A K, Dash P, Mohantya A, Abbassib R, Mishraa B K. Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal [J]. Ecol. Eng., 2012, 47: 126-131. |
[29] | Liu S T, Song H L, Li X N, Yang F. Power generation enhancement by utilizing plant photosynthate in microbial fuel cell coupled constructed wetland system [J]. Int. J. Photoenergy, 2013, 2013: 1-10. |
[30] | Fang Z, Song H L, Cang N, Li X N. Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation [J]. Bioresour. Technol., 2013, 144: 165-171. |
[31] | Mohan S V, Raghavulu S V, Peri D, Sarma P N. Integrated function of microbial fuel bio-electrochemical treatment system cell (MFC) associated bioelectricity generation under higher substrate load [J]. Biosens. Bioelectron., 2009, 24(7): 2021-2027. |
[32] | Cheng Shuiping(成水平), Wu Zhenbin(吴振斌), Kuang Qijun(况琪军). Wetland plants [J]. Journal of Lake Sciences(湖泊科学), 2012, 14(2): 179-184. |
[33] | Timmers R A, Strik D P, Arampatzoglou C, Buisman C J, Hamelers H V. Rhizosphere anode model explains high oxygen levels during operation of a Glyceria maxima PMFC [J]. Bioresour. Technol., 2012, 108: 60-67. |
[34] | Connell E L, Colmer T D, Walker, D I. Radial oxygen loss from intact roots of Halophila ovalis as a function of distance behind the root tip and shoot illumination [J]. Aquat. Bot., 1999, 63(3/4): 219-228. |
[35] | Ren Z, Ward T E, Regan J M. Electricity production from cellulose in a microbial fuel cell using a defined binary culture [J]. Environ. Sci. Technol., 2007, 41(13): 4781-4786. |
[36] | Rezaei F, Richard T L, Logan B E. Enzymatic hydrolysis of cellulose coupled with electricity generation in a microbial fuel cell [J]. Biotechnol. Bioeng., 2008, 101 (6): 1163-1169. |
[37] | Rabaey K, Rodriguez J, Blackall L L, Keller J, Gross P, Batstone D, Verstraete W, Nealson K H. Microbial ecology meets electrochemistry: electricity-driven and driving communities [J]. The ISME Journal, 2007, 1(1): 9-18. |
[38] | Rabaey K, Angenent L, Schroder U, Keller J. Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Application [M]. London: IWA Publishing, 2010: 6. |
[39] | Wei J C, Liang P, Huang X. Recent progress in electrodes for microbial fuel cells [J]. Bioresour. Technol., 2011, 102(20): 9335-9344. |
[40] | Arends J B A, londeel V, Tennison S R, Boon N, Verstraete W. Suitability of granular carbon as an anode material for sediment microbial fuel cells [J]. J. Soils Sediment, 2012, 12(7): 1197-1206. |
[41] | Helder M, Chen W S, Harst E J, Strik D P, Hamelers H, Buisman C J, Potting J. Electricity production with living plants on a green roof: environmental performance of the plant-microbial fuel cell [J]. Biofuels Bioprod. Bioref., 2013, 7(1): 52-64. |
[42] | Behera M, Jana P S, Ghangrekar M M. Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode [J]. Bioresour. Technol., 2010, 101(4): 1183-1189. |
[43] | Huang L, Regan J M, Quan X. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells [J]. Bioresour. Technol., 2011, 102(1): 316-323. |
[44] | Harnisch F, Schröder U. Selectivity versus mobility: separation of anode and cathode in microbial bioelectrochemical systems [J]. ChemSusChem, 2009, 2(10): 921-926. |
[45] | Liu H, Cheng S, Huang L, et al. Scale-up of membrane-free single-chamber microbial fuel cells [J]. J. Power Sources, 2008, 179(1): 274-279. |
[46] | Zhao Y Q, Collum S, Phelan M, Goodbody T, Doherty L, Hu Y S. Preliminary investigation of constructed wetland incorporating microbial fuel cell: batch and continuous flow trials [J]. Chem. Eng. J., 2013, 229: 364-370. |
[47] | Villasenor J, Capilla P, Rodrigo M A, Cañizares P, Fernández F J. Operation of a horizontal subsurface flow constructed wetland- microbial fuel cell treating wastewater under different organic loading rates [J]. Water Res., 2013, 47(17): 6731-6738. |
[48] | Feng Yujie(冯玉杰), Wang Xin(王鑫), Li He(李贺), Yang Qiao(杨俏), Qu Youpeng(曲有鹏), Shi Xinxin(史昕欣), Liu Jia(刘佳), He Weihua(何伟华), Xie Mingli(解明利). Progress in electricity generation from biomass using microbial fuel cell(MFC) [J]. Environmental Science(环境科学), 2010, 31(10): 2525-2531. |
[49] | Chen C Y, Chen T Y, Chung Y C. A comparison of bioelectricity in microbial fuel cells with aerobic and anaerobic anodes [J]. Environ. Technol., 2014, 35(3): 286-293. |
[50] | Chae K J, Choi M J, Lee J W, Kim K Y, Kim I S. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells [J]. Bioresour. Technol., 2009, 100(14): 3518-3525. |
[51] | Savin I I, Butnaru R. Wastewater characteristics in textile finishing mills [J]. Environ. Eng. Manage J., 2008, 7: 859-864. |
[52] | Corbella C, Garfi M, Puigagut J. Vertical redox profiles in treatment wetlands as function of hydraulic regime and macrophytes presence: surveying the optimal scenario for microbial fuel cell implementation [J]. Sci. Total Environ., 2014, 470/471: 754-75. |
[53] | Sharma Y, Li B K. Optimizing energy harvest in wastewater treatment by combining anaerobic hydrogen producing biofermentor(HPB) and microbial fuel cell (MFC) [J]. Int. J. Hydrogen Energy, 2010, 35(8): 3789-3797. |
[1] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[4] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[5] | 段重达, 姚小伟, 朱家华, 孙静, 胡南, 李广悦. 环境因素对克雷白氏杆菌诱导碳酸钙沉淀的影响[J]. 化工学报, 2023, 74(8): 3543-3553. |
[6] | 朱理想, 罗默也, 张晓东, 龙涛, 余冉. 醌指纹法指示三氯乙烯污染土功能微生物活性应用研究[J]. 化工学报, 2023, 74(6): 2647-2654. |
[7] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[8] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[9] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[10] | 闫新龙, 黄志刚, 胡清勋, 张新, 胡晓燕. Cu/Co掺杂多孔炭活化过硫酸盐降解水中硝基酚研究[J]. 化工学报, 2023, 74(3): 1102-1112. |
[11] | 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293. |
[12] | 毕浩然, 张洋, 王凯, 徐晨晨, 霍奕影, 陈必强, 谭天伟. 微生物制造绿色化学品研究进展[J]. 化工学报, 2023, 74(1): 1-13. |
[13] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
[14] | 郭祥, 乔金硕, 王振华, 孙旺, 孙克宁. 碳燃料固体氧化物燃料电池结构研究进展[J]. 化工学报, 2023, 74(1): 290-302. |
[15] | 张童, 杨扬, 叶丁丁, 陈蓉, 朱恂, 廖强. 催化剂分布对可渗透阳极微流体燃料电池性能特性影响的研究[J]. 化工学报, 2022, 73(9): 4156-4162. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||