化工学报 ›› 2015, Vol. 66 ›› Issue (8): 2767-2772.DOI: 10.11949/j.issn.0438-1157.20150642
邓声威, 黄永民, 刘洪来, 胡英
收稿日期:
2015-05-21
修回日期:
2015-05-30
出版日期:
2015-08-05
发布日期:
2015-08-05
通讯作者:
刘洪来
基金资助:
国家自然科学基金项目(91334203, 21476071);中央高校基本科研业务费资助项目。
DENG Shengwei, HUANG Yongmin, LIU Honglai, HU Ying
Received:
2015-05-21
Revised:
2015-05-30
Online:
2015-08-05
Published:
2015-08-05
Supported by:
supported by the National Natural Science Foundation of China (91334203, 21476071) and the Fundamental Research Funds for the Central Universities of China.
摘要:
聚合物材料的宏观力学性能与其微观结构具有密切的关系,计算机模拟是研究这种结构与性能关系的重要手段之一,近年来国内外学者已经发展了多种模拟方法并从不同尺度来模拟聚合物材料的力学性能。本文综述了不同方法在聚合物材料力学性能模拟研究中的应用,重点介绍了Monte Carlo模拟、分子动力学模拟和基于弹簧格子模型的多尺度模拟这3种常见模拟方法的应用情况,如在分子动力学模拟中重点关注无定形聚合物玻璃态、结晶聚乙烯和部分非均质体系,而在多尺度模拟中则重点关注复杂的非均质聚合物体系,并讨论了各种方法的应用前景及亟待解决的问题。
中图分类号:
邓声威, 黄永民, 刘洪来, 胡英. 聚合物材料力学性能的计算机模拟[J]. 化工学报, 2015, 66(8): 2767-2772.
DENG Shengwei, HUANG Yongmin, LIU Honglai, HU Ying. Computer simulation of mechanical properties of polymer materials[J]. CIESC Journal, 2015, 66(8): 2767-2772.
[1] | Sun D, Guo H. Monte Carlo simulations on interfacial properties of bidisperse gradient copolymers [J]. Polymer, 2015, 63: 82-90. |
[2] | Chui C, Boyce M C. Monte Carlo modeling of amorphous polymer deformation: evolution of stress with strain [J]. Macromolecules, 1999, 32(11): 3795-3808. |
[3] | Papakonstantopoulos G J, Yoshimoto K, Doxastakis M, Nealey P F, de Pablo J J. Local mechanical properties of polymeric nanocomposites [J]. Physical Review E, 2005, 72(3): 031801. |
[4] | Termonia Y, Meakin P, Smith P. Theoretical study of the influence of the molecular weight on the maximum tensile strength of polymer fibers [J]. Macromolecules, 1985, 18(11): 2246-2252. |
[5] | Edgecombe S, Linse P. Monte Carlo simulation of two interpenetrating polymer networks: structure, swelling, and mechanical properties [J]. Polymer, 2008, 49(7): 1981-1992. |
[6] | Rottler J, Robbins M O. Growth, microstructure, and failure of crazes in glassy polymers [J]. Physical Review E, 2003, 68(1): 011801. |
[7] | Rottler J, Robbins M O. Unified description of aging and rate effects in yield of glassy solids [J]. Physical Review Letters, 2005, 95(22): 225504. |
[8] | Robbins M O, Hoy R S. Scaling of the strain hardening modulus of glassy polymers with the flow stress [J]. Journal of Polymer Science (Part B): Polymer Physics, 2009, 47(14): 1406-1411. |
[9] | Hoy R S, Robbins M O. Strain hardening of polymer glasses: entanglements, energetics, and plasticity [J]. Physical Review E, 2008, 77(3): 031801. |
[10] | Riggleman R A, Lee H N, Ediger M D, de Pablo J J. Free volume and finite-size effects in a polymer glass under stress [J]. Physical Review Letters, 2007, 99(21): 215501. |
[11] | Riggleman R A, Schweizer K S, de Pablo J J. Nonlinear creep in a polymer glass [J]. Macromolecules, 2008, 41(13): 4969-4977. |
[12] | Paul W, Yoon D Y, Smith G D. An optimized united atom model for simulations of polymethylene melts [J]. The Journal of Chemical Physics, 1995, 103(4): 1702-1709. |
[13] | Yamamoto T. Molecular dynamics of polymer crystallization revisited: crystallization from the melt and the glass in longer polyethylene [J]. The Journal of Chemical Physics, 2013, 139(5): 054903. |
[14] | Lee S, Rutledge G C. Plastic deformation of semicrystalline polyethylene by molecular simulation [J]. Macromolecules, 2011, 44(8): 3096-3108. |
[15] | Che J, Locker C R, Lee S, Rutledge G C, Hsiao B S, Tsou A H. Plastic deformation of semicrystalline polyethylene by X-ray scattering: comparison with atomistic simulations [J]. Macromolecules, 2013, 46(13): 5279-5289. |
[16] | Lavine M S, Waheed N, Rutledge G C. Molecular dynamics simulation of orientation and crystallization of polyethylene during uniaxial extension [J]. Polymer, 2003, 44(5): 1771-1779. |
[17] | Kim J M, Locker R, Rutledge G C. Plastic deformation of semicrystalline polyethylene under extension, compression, and shear using molecular dynamics simulation [J]. Macromolecules, 2014, 47(7): 2515-2528. |
[18] | Makke A, Lame O, Perez M, Barrat J L. Influence of tie and loop molecules on the mechanical properties of lamellar block copolymers [J]. Macromolecules, 2012, 45(20): 8445-8452. |
[19] | Makke A, Lame O, Perez M, Barrat J L. Nanoscale buckling in lamellar block copolymers: a molecular dynamics simulation approach [J]. Macromolecules, 2013, 46(19): 7853-7864. |
[20] | Makke A, Perez M, Lame O, Barrat J L. Nanoscale buckling deformation in layered copolymer materials [J]. Proceedings of the National Academy of Sciences, 2012, 109(3): 680-685. |
[21] | Ge T, Pierce F, Perahia D, Grest G S, Robbins M O. Molecular dynamics simulations of polymer welding: strength from interfacial entanglements [J]. Physical Review Letters, 2013, 110(9): 098301. |
[22] | Ge T, Grest G S, Robbins M O. Structure and strength at immiscible polymer interfaces [J]. ACS Macro Letters, 2013, 2(10): 882-886. |
[23] | Liu J, Zhang L, Cao D, Wang W. Static, rheological and mechanical properties of polymer nanocomposites studied by computer modeling and simulation [J]. Physical Chemistry Chemical Physics, 2009, 11(48): 11365-11384. |
[24] | Gao Y, Liu J, Shen J, Zhang L, Guo Z, Cao D. Uniaxial deformation of nanorod filled polymer nanocomposites: a coarse-grained molecular dynamics simulation [J]. Physical Chemistry Chemical Physics, 2014, 16(30): 16039-16048. |
[25] | Liu J, Wu S, Zhang L, Wang W, Cao D. Molecular dynamics simulation for insight into microscopic mechanism of polymer reinforcement [J]. Physical Chemistry Chemical Physics, 2011, 13(2): 518-529. |
[26] | Hrennikoff A. Solution of problems of elasticity by the framework method [J]. Journal of Applied Mechanics, 1941, 8(4): 169-175. |
[27] | Zhao G, Khalili N. A lattice spring model for coupled fluid flow and deformation problems in geomechanics [J]. Rock Mechanics and Rock Engineering, 2012, 45(5): 781-799. |
[28] | Hahn M, Wallmersperger T, Kröplin B H. Discrete element representation of continua: proof of concept and determination of the material parameters [J]. Computational Materials Science, 2010, 50(2): 391-402. |
[29] | Zhao X, Deng S, Huang Y, Liu H, Hu Y. Simulation of morphologies and mechanical properties of A/B polymer blend film [J]. Chinese Journal of Chemical Engineering, 2011, 19(4): 549-557. |
[30] | Buxton G A, Balazs A C. Micromechanical simulation of the deformation and fracture of polymer blends [J]. Macromolecules, 2005, 38(2): 488-500. |
[31] | Deng S, Zhao X, Huang Y, Han X, Liu H, Hu Y. Deformation and fracture of polystyrene/polypropylene blends: a simulation study [J]. Polymer, 2011, 52(24): 5681-5694. |
[32] | Buxton G, Balazs A. Modeling the dynamic fracture of polymer blends processed under shear [J]. Physical Review B, 2004, 69(5): 054101. |
[33] | Gao C, Zhang S, Li X, Zhu S, Jiang Z. Synthesis of poly (ether ether ketone)-block-polyimide copolymer and its compatibilization for poly (ether ether ketone)/thermoplastic polyimide blends [J]. Polymer, 2014, 55(1): 119-125. |
[34] | Deng Shengwei(邓声威), Han Xia(韩霞), Huang Yongmin(黄永民), Xu Shouhong(徐首红), Liu Honglai(刘洪来), Lin Shaoliang(林绍梁). Sequential mesoscale approach for determining the effects of the addition of a block copolymer compatibilizer on the mechanical properties of polymer blends [J]. Acta Physico-Chimica Sinica(物理化学学报), 2014, 30(12): 2241-2248. |
[35] | Bates F S, Hillmyer M A, Lodge T P, Bates C M, Delaney K T, Fredrickson G H. Multiblock polymers: panacea or Pandora's box[J]. Science, 2012, 336(6080): 434-440. |
[36] | Sun J, Teran A A, Liao X, Balsara N P, Zuckermann R N. Crystallization in sequence-defined peptoid diblock copolymers induced by microphase separation [J]. Journal of the American Chemical Society, 2014, 136(5): 2070-2077. |
[37] | Srichan S, Kayunkid N, Oswald L, Lotz B, Lutz J F. Synthesis and characterization of sequence-controlled semicrystalline comb copolymers: influence of primary structure on materials properties [J]. Macromolecules, 2014, 47(5): 1570-1577. |
[38] | Touris A, Lee S, Hillmyer M A, Bates F S. Synthesis of tri-and multiblock polymers with asymmetric poly (ethylene oxide) end blocks [J]. ACS Macro Letters, 2012, 1(6): 768-771. |
[39] | Mahanthappa M K, Hillmyer M A, Bates F S. Mechanical consequences of molecular composition on failure in polyolefin composites containing glassy, elastomeric, and semicrystalline components [J]. Macromolecules, 2008, 41(4): 1341-1351. |
[40] | Xie N, Liu M, Deng H, Li W, Qiu F, Shi A C. Macromolecular metallurgy of binary mesocrystals via designed multiblock terpolymers [J]. Journal of the American Chemical Society, 2014, 136(8): 2974-2977. |
[41] | Grieshaber S E, Paik B A, Bai S, Kiick K L, Jia X. Nanoparticle formation from hybrid, multiblock copolymers of poly (acrylic acid) and a VPGVG peptide [J]. Soft Matter, 2013, 9(5): 1589-1599. |
[42] | Ahmed E, Morton S W, Hammond P T, Swager T M. Fluorescent multiblock π‐conjugated polymer nanoparticles for in vivo tumor targeting [J]. Advanced Materials, 2013, 25(32): 4504-4510. |
[43] | Mansour A S, Lodge T P, Bates F S. Mechanical properties of glass continuous poly(cyclohexylethylene) block copolymers [J]. Journal of Polymer Science (Part B): Polymer Physics, 2012, 50(10): 706-717. |
[44] | Phatak A, Lim L S, Reaves C K, Bates F S. Toughness of glassy-semicrystalline multiblock copolymers [J]. Macromolecules, 2006, 39(18): 6221-6228. |
[45] | Deng S, Huang Y, Lian C, Xu S, Liu H, Lin S. Micromechanical simulation of molecular architecture and orientation effect on deformation and fracture of multiblock copolymers [J]. Polymer, 2014, 55(18): 4776-4785. |
[46] | He F, Lau S, Chan H L, Fan J. High dielectric permittivity and low percolation threshold in nanocomposites based on poly (vinylidene fluoride) and exfoliated graphite nanoplates [J]. Advanced Materials, 2009, 21(6): 710-715. |
[47] | Buxton G, Balazs A. Simulating the morphology and mechanical properties of filled diblock copolymers [J]. Physical Review E, 2003, 67(3): 031802. |
[48] | Buxton G A, Balazs A C. Lattice spring model of filled polymers and nanocomposites [J]. The Journal of Chemical Physics, 2002, 117(16): 7649-7658. |
[49] | Deng S, Huang Y, Xu S, Lin S, Liu H, Hu Y. Mechanical properties of high-performance elastomeric nanocomposites: a sequential mesoscale simulation approach [J]. RSC Advances, 2014, 4(108): 63586-63595. |
[1] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[2] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[3] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[4] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[5] | 徐文杰, 贾献峰, 王际童, 乔文明, 凌立成, 王任平, 余子舰, 张寅旭. 有机硅/酚醛杂化气凝胶的制备和性能研究[J]. 化工学报, 2023, 74(8): 3572-3583. |
[6] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[7] | 史昊鹏, 钟达文, 廉学新, 张君峰. 朝下多尺度沟槽翅片结构表面沸腾换热实验研究[J]. 化工学报, 2023, 74(7): 2880-2888. |
[8] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[9] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[10] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[11] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[12] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[13] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[14] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[15] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1653
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 538
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||