[1] |
Inoue T, Schmidt M A, Jensen K F. Microfabricated multiphase reactors for the direct synthesis of hydrogen peroxide from hydrogen and oxygen [J]. Ind. Eng. Chem. Res., 2007, 46(4): 1153-1160.
|
[2] |
Zhao Y C, Yao C Q, Chen G W, Yuan Q. Highly efficient synthesis of cyclic carbonate with CO2 catalyzed by ionic liquid in a microreactor [J]. Green Chem., 2013, 15(2): 446-452.
|
[3] |
Yue J, Chen G W, Yuan Q, Luo L A, Gonthier Y. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel [J]. Chem. Eng. Sci., 2007, 62(7): 2096-2108.
|
[4] |
de Mas N, Gunther A, Schmidt M A, Jensen K F. Microfabricated multiphase reactors for the selective direct fluorination of aromatics [J]. Ind. Eng. Chem. Res., 2003, 42(4): 698-710.
|
[5] |
Hessel V, Kralisch D, Kockmann N, Noel T, Wang Q. Novel process windows for enabling, accelerating, and uplifting flow chemistry [J]. ChemSusChem., 2013, 6(5): 746-789.
|
[6] |
Garstecki P, Fuerstman M J, Stone H A, Whitesides G M. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up [J]. Lab Chip, 2006, 6(3): 437-446.
|
[7] |
Yao C Q, Zhao Y C, Ye C B, Dang M H, Dong Z Y, Chen G W. Characteristics of slug flow with inertial effects in a rectangular microchannel [J]. Chem. Eng. Sci., 2013. 95: 246-256.
|
[8] |
Yao C Q, Dong Z Y, Zhao Y C, Chen G W. The effect of system pressure on gas-liquid slug flow in a microchannel [J]. AIChE Journal, 2014, 60: 1132-1142.
|
[9] |
Xu K, Tostado C P, Xu J H, Lu Y C, Luo G S. Direct measurement of the differential pressure during drop formation in a co-flow microfluidic device [J]. Lab Chip, 2014, 14(7): 1357-1366.
|
[10] |
Dietrich N, Poncin S, Midoux N, Li H Z. Bubble formation dynamics in various flow-focusing microdevices [J]. Langmuir, 2008, 24: 13904-13911.
|
[11] |
Dang M H, Yue J, Chen G W, Yuan Q. Formation characteristics of Taylor bubbles in a microchannel with a converging shape mixing junction [J]. Chem. Eng. J., 2013, 223: 99-109.
|
[12] |
Abadie T, Aubin J, Legendre D, Xuereb C. Hydrodynamics of gas-liquid Taylor flow in rectangular microchannels [J]. Microfluidics Nanofluidics, 2012, 12(1/4): 355-369.
|
[13] |
Fu T T, Ma Y G, Funfschilling D, Zhu C Y, Li Z H. Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction [J]. Chem. Eng. Sci., 2010, 65(12): 3739-3748.
|
[14] |
van Steijn V, Kreutzer M T, Kleijn C R. m-PIV study of the formation of segmented flow in microfluidic T-junctions [J]. Chem. Eng. Sci., 2007, 62(24): 7505-7514.
|
[15] |
Pohorecki R, Kula K. A simple mechanism of bubble and slug formation in Taylor flow in microchannels [J]. Chem. Eng. Res. Des., 2008, 86(9): 997-1001.
|
[16] |
Qian D, Lawal A. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel [J]. Chem. Eng. Sci., 2006, 61(23): 7609-7625.
|
[17] |
Sun R, Cubaud T. Dissolution of carbon dioxide bubbles and microfluidic multiphase flows [J]. Lab Chip, 2011, 11(17): 2924-2928.
|
[18] |
Fries D M, von Rohr R P. Impact of inlet design on mass transfer in gas-liquid rectangular microchannels [J]. Microfluids Nanofluids, 2009, 6(1): 27-35.
|
[19] |
Tan J, Lu Y C, Xu J H, Luo G S. Mass transfer characteristic in the formation stage of gas-liquid segmented flow in microchannel [J]. Chem. Eng. J., 2012, 185/186: 314-320.
|
[20] |
Ji Xiyan (季喜燕). Research on the gas-liquid flow and mass transfer in microchannels [D]. Tianjin: Tianjin Uninversity, 2011.
|
[21] |
Ganapathy H, Al-Hajri E, Ohadi M. Mass transfer characteristics of gas-liquid absorption during Taylor flow in mini/microchannel reactors [J]. Chem. Eng. Sci., 2013, 101: 69-80.
|
[22] |
Yao C Q, Dong Z Y, Zhao Y C, Chen G W. An online method to measure mass transfer of slug flow in a microchannel [J]. Chem. Eng. Sci., 2014, 112: 15-24.
|
[23] |
Yao C Q, Dong Z Y, Zhao Y C, Chen G W. Gas-liquid flow and mass transfer in a microchannel under elevated pressures [J]. Chem. Eng. Sci., 2015, 123: 137-145.
|
[24] |
Kreutzer M T, Kapteijn F, Moulijn J A, Heiszwolf J J. Multiphase monolith reactors: chemical reaction engineering of segmented flow in microchannels [J]. Chem. Eng. Sci., 2005, 60(22): 5895-5916.
|
[25] |
Aussillous P, Quéré D. Quick deposition of a fluid on the wall of a tube [J]. Phys. Fluids, 2000, 12(10): 2367-2371.
|
[26] |
Kolb W B, Cerro R L. Coating the inside of a capillary of square cross-section [J]. Chem. Eng. Sci., 1991, 46(9): 2181-2195.
|
[27] |
Thulasidas T C, Abraham M A, Cerro R L. Bubble-train flow in capillaries of circular and square cross-section [J]. Chem. Eng. Sci., 1995, 50(2): 183-199.
|
[28] |
Hazel A L, Heil M. The steady propagation of a semi-infinite bubble into a tube of elliptical or rectangular cross-section [J]. J. Fluid Mech., 2002, 470: 91-114.
|
[29] |
Han Y, Shikazono N. Measurement of liquid film thickness in micro square channel [J]. Int. J. Multiphase Flow, 2009, 35(10): 896-903.
|
[30] |
Zaloha P, Kristal J, Jiricny V, Völkel, Xuereb C, Aubin J, Characteristics of liquid slugs in gas-liquid Taylor flow in microchannels [J]. Chem. Eng. Sci., 2012, 68(1): 640-649.
|
[31] |
Taylor G. Deposition of a viscous fluid on the wall of a tube [J]. J Fluid Mech., 1961, 10(2): 161-165.
|
[32] |
Günther A, Khan S A, Thalmann M, Trachsel F, Jensen K F. Transport and reaction in microscale segmented gas-liquid flow [J]. Miniatur. Chem. Biol. Bioeng., 2004, 4: 278-286.
|
[33] |
Fries D, Waelchli S, von Rohr P R. Gas-liquid two-phase flow in meandering microchannels [J]. Chem. Eng. J., 2008, 135: S37-S45.
|
[34] |
Fries D M, von Rohr P R. Liquid mixing in gas-liquid two-phase flow by meandering microchannels [J]. Chem. Eng. Sci., 2009, 64(6): 1326-1335.
|
[35] |
Waelchli S, von Rohr P R. Two-phase flow characteristics in gas-liquid microreactors [J]. Int. J. Multiphase Flow, 2006, 32(7): 791-806.
|
[36] |
Sobieszuk P, Pohorecki R, Cygański P, Grzelka J. Determination of the interfacial area and mass transfer coefficients in the Taylor gas-liquid flow in a microchannel [J]. Chem. Eng. Sci., 2011, 66(23): 6048-6056.
|
[37] |
van Baten J M, Krishna R. CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries [J]. Chem. Eng. Sci., 2004, 59(12): 2535-2545.
|
[38] |
Dietrich N, Loubière K, Jimenez M, Hébrard G, Gourdon C. A new direct technique for visualizing and measuring gas-liquid mass transfer around bubbles moving in a straight millimetric square channel [J]. Chem. Eng. Sci., 2013, 100: 172-182.
|
[39] |
Vandu C O, Liu H, Krishna R. Mass transfer from Taylor bubbles rising in single capillaries [J]. Chem. Eng. Sci., 2005, 60(22): 6430-6437.
|
[40] |
Bercic G, Pintar A. The role of gas bubbles and liquid slug lengths on mass transport in the Taylor flow through capillaries [J]. Chem. Eng. Sci., 1997, 52: 3709-3719.
|
[41] |
Sobieszuk P, Aubin J, Pohorecki R. Hydrodynamics and mass transfer in gas-liquid flows in microreactors [J]. Chem. Eng. Technol., 2012, 35(8): 1346-1358.
|
[42] |
Yue J, Luo L, Gonthier Y, Chen G W, Yuan Q. An experimental study of air-water Taylor flow and mass transfer inside square microchannels [J]. Chem. Eng. Sci., 2009, 64(16): 3697-3708.
|
[43] |
Onea A, Wörner M, Cacuci D G. A qualitative computational study of mass transfer in upward bubble train flow through square and rectangular mini-channels [J]. Chem. Eng. Sci., 2009, 64(7): 1416-1435.
|
[44] |
Shao N, Gavriilidis A, Angeli P. Mass transfer during Taylor flow in microchannels with and without chemical reaction [J]. Chem. Eng. J., 2010, 160(3): 873-881.
|