[1] |
Wang G, Xu C, Gao J. Study of cracking FCC naphtha in a secondary riser of the FCC unit for maximum propylene production [J]. Fuel Process. Technol., 2008, 89(9): 864-873.
|
[2] |
Inagaki S, Takechi K, Kubota Y. Selective formation of propylene by hexane cracking over MCM-68 zeolite catalyst [J]. Chem. Commun., 2010, 46(15): 2662-2664.
|
[3] |
Hu Si(胡思), Gong Yanjun(巩雁军), Zhang Qing(张卿), Zhang Junliang(张军亮), Zhang Yafei(张亚飞), Yang Feiying(杨飞鹰), Dou Tao(窦涛). Methanol to propylene reaction over zeolite catalysts with different topologies [J]. CIESC Journal (化工学报), 2012, 63(12): 3889-3896.
|
[4] |
Hu S, Gong Y, Xu Q, Liu X, Zhang Q, Zhang L, Dou T. Highly selective formation of propylene from methanol over high-silica EU-1 zeolite catalyst [J]. Catal. Commun., 2012, 28: 95-99.
|
[5] |
Zhang Q, Hu S, Zhang L, Wu Z, Gong Y, Dou T. Facile fabrication of mesopore-containing ZSM-5 zeolite from spent zeolite catalyst for methanol to propylene reaction [J]. Green Chemistry, 2014, 16(1): 77-81.
|
[6] |
Fonseca N, dos Santos L R M, Cerqueira H S, Lemos F, Ramôa-Ribeiro F, Lam Y L, de Almeida M B B. Olefins production from cracking of a Fischer-Tropsch naphtha [J]. Fuel, 2012, 95: 183-189.
|
[7] |
Dupain X, Krul R A, Schaverien C J, Makkee M, Moulijn J A. Production of clean transportation fuels and lower olefins from Fischer-Tropsch synthesis waxes under fluid catalytic cracking conditions: the potential of highly paraffinic feedstocks for FCC [J]. Appl. Catal., B, 2006, 63(3/4): 277-295.
|
[8] |
Wang Jianping(王建平), Weng Huixin(翁惠新). Processing and utilization of oil fractions from Fishcher-Tropsch process [J]. Petroleum Refinery Engineering(炼油技术与工程), 2006, 36(1): 39-42.
|
[9] |
Liu Xiaoling(刘晓玲), Wang Yan(王艳), Wang Xujin(王旭金), Zhang Yafei(张亚飞), Gong Yanjun(巩雁军), Xu Qinghu(徐庆虎), Xu Jun (徐君), Deng Feng(邓风), Dou Tao(窦涛). Characterization and catalytic performance in n-hexane cracking of HEU-1 zeolites dealuminated using hydrochloric acid and hydrothermal treatments [J]. Chinese Journal of Catalysis(催化学报), 2012, 33(12): 1889-1900.
|
[10] |
Corma A, González-Alfaro V, Orchillés A V. The role of pore topology on the behaviour of FCC zeolite additives [J]. Appl. Catal., A, 1999, 187(2): 245-254.
|
[11] |
Corma A, Martínez-Triguero J N, Martínez C. The use of ITQ-7 as a FCC zeolitic additive [J]. J. Catal., 2001, 197(1): 151-159.
|
[12] |
Degnan T F, Chitnis G K, Schipper P H. History of ZSM-5 fluid catalytic cracking additive development at Mobil [J]. Microporous Mesoporous Mater., 2000, 35/36: 245-252.
|
[13] |
Rownaghi A A, Rezaei F, Hedlund J. Selective formation of light olefin by n-hexane cracking over HZSM-5: influence of crystal size and acid sites of nano-and micrometer-sized crystals [J]. Chem. Eng. J., 2012, 191: 528-533.
|
[14] |
Gao X, Tang Z, Zhang H, Ji D, Lu G, Wang Z, Tan Z. Influence of particle size of ZSM-5 on the yield of propylene in fluid catalytic cracking reaction [J]. J. Mol. Catal. A: Chem., 2010, 325(1/2): 36-39.
|
[15] |
Haag W O, Lago R M, Weisz R M. Transport and reactivity of hydrocarbon molecules in a shape-selective zeolite [J]. Faraday Discussions of the Chemical Society, 1981, 72: 317-330.
|
[16] |
Rahimi N, Karimzadeh R. Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review [J]. Appl. Catal., A, 2011, 398 (1/2): 1-17.
|
[17] |
Kubo K, Iida H, Namba S, Igarashi A. Selective formation of light olefin by n-heptane cracking over HZSM-5 at high temperatures [J]. Microporous Mesoporous Mater., 2012, 149: 126-133.
|
[18] |
Liu Jian(刘剑), Sun Shukun(孙淑坤), Zhang Yongjun (张永军), Ji Yonggang(汲永钢), Wan Shubao(万书宝), He Defu(贺德福). Advance in catalytic cracking of naphtha to light olefins and techno-economic analysis [J]. Chemical Industry(化学工业), 2011, 29(11): 33-36.
|
[19] |
Mochizuki H, Yokoi T, Imai H, Watanabe R, Namba S, Kondo J N, Tatsumi T. Facile control of crystallite size of ZSM-5 catalyst for cracking of hexane [J]. Microporous Mesoporous Mater., 2011, 145: 165-171.
|
[20] |
von Ballmoos R, Meier W M. Zoned aluminium distribution in synthetic zeolite ZSM-5 [J]. Nature, 1981, 289: 782-783.
|
[21] |
Cumming K A, Wojciechowski B W. Hydrogen transfer, coke formation, and catalyst decay and their role in the chain mechanism of catalytic cracking [J]. Catalysis Reviews, 1996, 38(1): 101-157.
|
[22] |
Corma A, Mengual J, Miguel P J. Steam catalytic cracking of naphtha over ZSM-5 zeolite for production of propene and ethene: micro and macroscopic implications of the presence of steam [J]. Appl. Catal., A, 2012, 417/418: 220-235.
|
[23] |
Konno H, Tago T, Nakasaka Y, Ohnaka R, Nishimura J I, Masuda T. Effectiveness of nano-scale ZSM-5 zeolite and its deactivation mechanism on catalytic cracking of representative hydrocarbons of naphtha [J]. Microporous Mesoporous Mater., 2013, 175: 25-33.
|
[24] |
Raichle A, Traa Y, Fuder F, Rupp M, Weitkamp J. Haag-Dessau catalysts for ring opening of cycloalkanes [J]. Angew. Chem. Int. Ed., 2001, 40(7): 1243-1246.
|
[25] |
Maesen T L M, Calero S, Schenk M, Smit B. Alkane hydrocracking: shape selectivity or kinetics? [J]. J. Catal., 2004, 221(1): 241-251.
|
[26] |
Yan H T, Van Mao R Le. Mixed naphtha/methanol feed used in the thermal catalytic/steam cracking (TCSC) process for the production of propylene and ethylene [J]. Catal. Lett., 2011, 141(5): 691-698.
|
[27] |
Maia A J, Oliveira B G, Esteves P M, Louis B, Lam Y L, Pereira M M. Isobutane and n-butane cracking on Ni-ZSM-5 catalyst: effect on light olefin formation [J]. Appl. Catal., A, 2011, 403: 58-64.
|