[1] |
OLDSTEIN S. Modern Developments in Fluid Dynamics[M]. Vol Ⅱ. Oxford: Clarendon Press, 1957: 676-680.
|
[2] |
BEAVERS G S, JOSEPH D D. Boundary conditions at a naturally permeable wall[J]. Journal of Fluid Mechanics, 1967, 30 (1): 197-207. DOI: 10.1017/S0022112067001375
|
[3] |
MA G J, WU C W, ZHOU P. Wall slip and hydrodynamics of two-dimensional journal bearing[J]. Tribology International, 2007, 40: 1056-1066. DOI: 10.1016/j.triboint.2006.10.003.
|
[4] |
THOMPSON P A, TROIAN S M. A general boundary condition for liquid flow at solid surfaces[J]. Nature, 1997, 389: 360-362. DOI: 10.1038/38686.
|
[5] |
RIEZJEV N V, TROIAN S M. Molecular origin and dynamic behavior of slip in sheared polymer films[J]. Physical Review Letters, 2004, 92 (1): 018302. DOI: 10.1103/PhysRevLett.92.018302.
|
[6] |
JING D, BHUSHAN B. Boundary slip of superoleophilic, oleophobic, and superoleophobic surfaces immersed in deionized water, hexadecane, and ethylene glycol[J]. Langmuir, 2013, 29 (47): 14691-14700. DOI: 10.1021/la4030876.
|
[7] |
ESPINOSA-MARZAL R M, ARCIFA A, ROSSI A, et al. Microslips to "avalanches" in confined, molecular layers of ionic liquids[J]. The Journal of Physical Chemistry Letters, 2013, 5 (1): 179-184. DOI: 10.1021/jz402451v.
|
[8] |
陈其乐, 孔宪, 卢滇楠, 等. 外壁电荷性质对双壁碳纳米管中水分子运动行为的影响[J]. 化工学报, 2014, 65 (1): 319-327. DOI: 10.3969/j.issn.0438-1157.2014.01.042. CHEN Q L, KONG X, LU D N, et al. Molecular simulation of outer surface charge on water transport through double-wall carbon nanotube[J]. CIESC Journal, 2014, 65 (1): 319-327. DOI: 10.3969/j.issn.0438-1157.2014.01.042.
|
[9] |
张程宾, 赵沐雯, 陈永平, 等. 流体密度对纳通道内流动滑移的影响[J]. 化工学报, 2012, 63 (S1): 12-16. DOI: 10.3969/j.issn.0438-1157.2012.zl.003. ZHANG C B, ZHAO M W, CHEN Y P, et al. Effects of fluid density on velocity slip in nanochannels[J]. CIESC Journal, 2012, 63 (S1): 12-16. DOI: 10.3969/j.issn.0438-1157.2012.zl.003.
|
[10] |
潘伶, 高诚辉. 纳米间隙润滑剂季戊四醇四酯的压缩性能分子动力学模拟[J]. 机械工程学报, 2015, 51 (5): 76-82. DOI: 10.3901/JME.2015.05.076. PAN L, GAO C H. Molecular dynamics simulation on the compressibility of pentaerythritol tetra in nanogap[J]. Journal of Mechanical Engineering, 2015, 51 (5): 76-82. DOI: 10.3901/JME.2015.05.076.
|
[11] |
PAN L, GAO C H. Confined fluid density of a pentaerythritol tetraheptanoate lubricant investigated using molecular dynamics simulation[J]. Fluid Phase Equilibria, 2015, 385: 212-218. DOI: 10.1016/j.fluid.2014.11.014.
|
[12] |
TSIGE M, PATNAIK S S. An all-atom simulation study of the ordering of liquid squalane near a solid surface[J]. Chemical Physics Letters, 2008, 457 (4/5/6): 357-361. DOI: 10.1016/j.cplett.2008.04.026.
|
[13] |
KARNIADAKIS G, BESKOK A, ALURU N. Microflows and Nanoflows: Fundamentals and Simulation[M]. Berlin Heidelberg, New York: Springer, 2004: 1-23.
|
[14] |
PERTSIN A J, GRUNZE M. Long-ranged solvation forces in a fluid with short-ranged interactions[J]. Journal of Chemical Physics, 2003, 118 (17): 8004-8009. DOI: 10.1063/1.1564051.
|
[15] |
LOI S, SUN G, FRANZ V, et al. Rupture of molecular thin films observed in atomic force microscopy (II): Experiment[J]. Physical Review E, 2002, 66 (3): 031602. DOI: 10.1103/PhysRevE.66.031602.
|
[16] |
FRANZ V, BUTT H-J. Confined liquids: solvation forces in liquid alcohols between solid surfaces[J]. The Journal of Physical Chemistry B, 2002, 106 (7): 1703-1708. DOI: 10.1021/jp012541w.
|
[17] |
陈天星. 利用原子力显微镜对近壁面受限液体性质的研究[D]. 北京: 清华大学, 2011. CHEN T X. Study on properties of the confined liquids at solid surface with AFM[D]. Beijing: Tsinghua University, 2011.
|
[18] |
SIVEBAEK I M, SAMOILOV V N, PERSSON B N J. Squeezing molecularly thin alkane lubrication films: layering transitions and wear[J]. Tribology Letters, 2004, 16 (3): 195-200. DOI: 10.1023/B:TRIL.0000009730.31175.82.
|
[19] |
胡元中, 王慧, 郭炎. 超薄油膜润滑的分子动力学模拟[J]. 摩擦学学报, 1995, 15 (2): 138-144. DOI: 10.16078/j.tribology.1995.02.007. HU Y Z, WANG H, GUO Y. Molecular dynamics simulation of ultra thin film lubrication (I): Rigid molecule model[J]. Tribology, 1995, 15 (2): 138-144. DOI: 10.16078/j.tribology.1995.02.007.
|
[20] |
王慧, 胡元中, 郭炎. 超薄润滑膜界面滑移现象的分子动力学研究[J]. 清华大学学报 (自然科学版), 2000, 40 (4): 107-110. WANG H, HU Y Z, GUO Y. Molecular dynamics study of interfacial slip behavior of ultrathin lubricating films[J]. J. Tsinghua Univ. (Sci. & Tech.), 2000, 40 (4): 107-110.
|
[21] |
NAGAYAMA G, CHENG P. Effects of interface wettability on microscale flow by molecular dynamic simulation[J]. International Journal of Heat and Mass Transfer, 2004, 47: 501-513. DOI: 10.1016/j.ijheatmasstransfer.2003.07.013.
|
[22] |
ASPROULIS N, DRIKAKIS D. Boundary slip dependency on surface stiffness[J]. Physical Review E, 2010, 81 (6): 061503. DOI: 10.1103/PhysRevE.81.061503.
|
[23] |
ZHANG H, ZHANG Z, YE H. Molecular dynamics-based prediction of boundary slip of fluids in nanochannels[J]. Microfluidics and Nanofluidics, 2012, 12 (1-4): 107-115. DOI: 10.1007/s10404-011-0853-y.
|
[24] |
NOORIAN H, TOGHRAIE D, AZIMIAN A R. Molecular dynamics simulation of poiseuille flow in a rough nano channel with checker surface roughnesses geometry[J]. Heat and Mass Transfer, 2014, 50 (1): 105-113. DOI: 10.1007/s00231-013-1232-x.
|
[25] |
PLIMPTON S. LAMMPS molecular dynamics simulator[EB/OL].[2015-5-15]. http://lammps.sandia.gov.
|
[26] |
PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117 (1): 1-19. DOI: 10.1006/jcph.1995.1039.
|
[27] |
SUN H. Ab initio calculations and force field development for computer simulation of polysilanes[J]. Macromolecules, 1995, 28 (3): 701-712. DOI: 10.1021/ma00107a006.
|
[28] |
SUN H. COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds[J]. Journal of Physical Chemistry B, 1998, 102 (38): 7338-7364. DOI: 10.1021/jp980939v.
|
[29] |
NAVIER C L M H. Memoire sur les du movement des fluids[J]. Mem l'Acad Roy Sci l'Inst France, 1823, 6: 389-440.
|
[30] |
VADAKKEPATT A, DONG Y, LICHTER S, et al. Effect of molecular structure on liquid slip[J]. Physical Review E, 2011, 84 (6): 066311. DOI: 10.1103/PhysRevE.84.066311.
|
[31] |
MENDONCA A C F, FOMIN Y D, MALFREYT P, et al. Novel ionic lubricants for amorphous carbon surfaces: molecular modeling of the structure and friction[J]. Soft Matter, 2013, 9 (44): 10606-10616. DOI: 10.1039/C3SM51689J.
|
[32] |
LIM R, O'SHEA S J. Solvation forces in branched molecular liquids[J]. Physical Review Letters, 2002, 88 (24): 246101. DOI: 10.1103/PhysRevLett.88.246101.
|
[33] |
LIM R, LI S F Y, O'SHEA S J. Solvation forces using sample-modulation atomic force microscopy[J]. Langmuir, 2002, 18 (16): 6116-6124. DOI: 10.1021/la011789+.
|
[34] |
ZHENG X, ZHU H, KOSASIH B, et al. A molecular dynamics simulation of boundary lubrication: the effect of n-alkanes chain length and normal load[J]. Wear, 2013, 301 (1/2): 62-69. DOI: 10.1016/j.wear.2013.01.052.
|