化工学报 ›› 2017, Vol. 68 ›› Issue (3): 811-820.DOI: 10.11949/j.issn.0438-1157.20160996
陈超1, 杨修春1,2, 刘巍1
收稿日期:
2016-07-14
修回日期:
2016-09-27
出版日期:
2017-03-05
发布日期:
2017-03-05
通讯作者:
杨修春,yangxc@tongji.edu.cn
基金资助:
上海纳米专项项目(11nm0500700)。
CHEN Chao1, YANG Xiuchun1,2, LIU Wei1
Received:
2016-07-14
Revised:
2016-09-27
Online:
2017-03-05
Published:
2017-03-05
Contact:
10.11949/j.issn.0438-1157.20160996
Supported by:
supported by the Nanotechnology Special Foundation of Shanghai (11 nm0500700).
摘要:
有机-无机杂化钙钛矿材料不仅具有较高的光吸收能力和载流子迁移率,同时具有双极性特征以及合成方法简单等优点,目前已成为最有发展前途的太阳能电池材料,其光电转化效率在7年内从3.8%迅速提升到20%以上,并有进一步提高的空间。简单介绍了钙钛矿材料的结构与性质,综述了钙钛矿太阳能电池的研究进展,指出了目前电池发展中亟需解决的问题及未来的发展方向。
中图分类号:
陈超, 杨修春, 刘巍. 有机-无机杂化钙钛矿太阳能电池的研究进展[J]. 化工学报, 2017, 68(3): 811-820.
CHEN Chao, YANG Xiuchun, LIU Wei. Research progress of hybrid organic-inorganic perovskite solar cells[J]. CIESC Journal, 2017, 68(3): 811-820.
[1] | LI G, SHROTRIYA V, HUANG J S, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends[J]. Nat. Mater., 2005, 4(11):864-868. |
[2] | HAGFELDT A, BOSCHLOO G, SUN L, et al. Dye-sensitized solar cells[J]. Chem. Rev., 2010, 110(11):6595-6663. |
[3] | BHUWALKA A, MIKE J F, HE M, et al. Quaterthiophene-benzobisazole copolymers for photovoltaic cells:effect of heteroatom placement and substitution on the optical and electronic properties[J]. Macromolecules, 2011, 44(24):9611-9617. |
[4] | HE M, QIU F, LIN Z Q. Toward high-performance organic-inorganic hybrid solar cells:bringing conjugated polymers and inorganic nanocrystals in close contact[J]. Phys. Chem. Lett., 2013, 4(11):1788-1796. |
[5] | KAKIAGE K, AOYAMA Y, YANO T, et al. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes[J]. Chemical Communications, 2015, 51(88):15894-15897. |
[6] | GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 36)[J]. Prog. Photovoltaics, 2010, 18(5):346-352. |
[7] | XIE Y S, TANG Y Y, WU W J, et al. Porphyrin cosensitization for a photovoltaic efficiency of 11.5%:a record for non-ruthenium solar cells based on iodine electrolyte[J]. Journal of the American Chemical Society, 2015, 137(44):14055-14058. |
[8] | WANG Y Q, CHEN B, WU W J, et al. Efficient solar cells sensitized by porphyrins with an extended conjugation framework and a carbazole donor:from molecular design to cosensitization[J]. Angewandte Chemie International Edition, 2014, 53(40):10779-10783. |
[9] | SUN X, WANG Y Q, LI X, et al. Cosensitizers for simultaneous filling up of both absorption valleys of porphyrins:a novel approach for developing efficient panchromatic dye-sensitized solar cells[J]. Chemical Communications, 2014, 50(98):15609-15612. |
[10] | PARK N G. Perovskite solar cells:an emerging photovoltaic technology[J]. Materials Today, 2015, 18(2):65-72. |
[11] | HEPBASLI A. A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future[J]. Renewable and Sustainable Energy Reviews, 2008, 12(3):593-661. |
[12] | KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Am. Chem. Soc., 2009, 131(17):6050-6051. |
[13] | IM J H, LEE C R, LEE J W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3(10):4088-4093. |
[14] | KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci. Rep., 2012, 2:591-597. |
[15] | CHANG J A, IM S H, LEE Y H, et al. Panchromatic photon-harvesting by hole-conducting materials in inorganic-organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels[J]. Nano Lett., 2012, 12(4):1863-1867. |
[16] | NOH J H, IM S H, HEO J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Lett., 2013, 13(4):1764-1769. |
[17] | ZHOU H P, CHEN Q, LI G, et al. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196):542-546. |
[18] | YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240):1234-1237. |
[19] | PARK N G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell[J]. Phys. Chem. Lett., 2013, 4(15):2423-2429. |
[20] | FORRESTER W F, HINDE R M. Crystal structure of barium titanate[J]. Nature, 1945, 156:177. |
[21] | ROOKSBY H P. Compounds of the structural type of calcium titanate[J]. Nature, 1945, 155:484. |
[22] | GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7):506-514. |
[23] | CAI B, XING Y D, YANG Z, et al. High performance hybrid solar cells sensitized by organolead halide perovskites[J]. Energy Environ. Sci., 2013, 6:1480-1485. |
[24] | WOJCIECHOWSKI K, STRANKS S D, ABATE A, et al. Heterojunction modification for highly efficient organic-inorganic perovskite solar cells[J]. ACS Nano, 2014, 8(12):12701-12709. |
[25] | MEI A Y, LI X, LIU L F, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science, 2014, 345(6194):295-298. |
[26] | EDRI E, KIRMAYER S, CAHEN D, et al. High open-circuit voltage solar cells based on organic-inorganic lead bromide perovskite[J]. Phys. Chem. Lett., 2013, 4(6):897-902. |
[27] | BURSCHKA J, DUALEH A, KESSLER F, et al. Tris(2-(1h-pyrazol-1-yl)pyridine)cobalt(Ⅲ) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells[J]. Am. Chem. Soc., 2011, 133(45):18042-18045. |
[28] | JANG S R, ZHU K, KO M J, et al. Voltage-enhancement mechanisms of an organic dye in high open-circuit voltage solid-state dye-sensitized solar cells[J]. ACS Nano, 2011, 5(10):8267-8274. |
[29] | BAI Y, CHEN H, XIAO S, et al. Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward faster hole extraction and higher photovoltaic performance[J]. Advanced Functional Materials, 2016, 26(17):2950-2958. |
[30] | QIN P, TANAKA S, ITO S, et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency[J]. Nature Communications, 2014, 5:3834. |
[31] | JUNG J W, CHUEH C C, JEN A K Y. High-performance semitransparent perovskite solar cells with 10% power conversion efficiency and 25% average visible transmittance based on transparent CuSCN as the hole-transporting material[J]. Advanced Energy Materials, 2015, 5(17):429-436. |
[32] | ETGAR L, GAO P, XUE Z, et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells[J]. Journal of the American Chemical Society, 2012, 134(42):17396-17399. |
[33] | AHARON S, GAMLIEL S, EL COHEN B, et al. Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells[J]. Physical Chemistry Chemical Physics, 2014, 16(22):10512-10518. |
[34] | LIU D, KELLY T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nature Photonics, 2014, 8(2):133-138. |
[35] | SONG J, ZHENG E, WANG X F, et al. Low-temperature-processed ZnO-SnO2 nanocomposite for efficient planar perovskite solar cells[J]. Solar Energy Materials and Solar Cells, 2016, 144:623-630. |
[36] | LIU D, YANG J, KELLY T L. Compact layer free perovskite solar cells with 13.5% efficiency[J]. Journal of the American Chemical Society, 2014, 136(49):17116-17122. |
[37] | KE W, FANG G, WAN J, et al. Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells[J]. Nature Communications, 2015, 6:6700. |
[38] | ZUO C T, BOLINK H J, HAN H W, et al. Advances in perovskite solar cells[J]. Advanced Science, 2016, 3(7):1500324. |
[39] | KU Z, RONG Y, XU M, et al. Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode[J]. Scientific Reports, 2013, 3:3132. |
[40] | LI Z, KULKARNI S A, BOIX P P, et al. Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells[J]. ACS Nano, 2014, 8(7):6797-6804. |
[41] | RONG Y, KU Z, MEI A, et al. Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes[J]. The Journal of Physical Chemistry Letters, 2014, 5(12):2160-2164. |
[42] | CHEN H, WEI Z, HE H, et al. Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14%[J]. Advanced Energy Materials, 2016, 6:1502087. |
[43] | BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458):316-319. |
[44] | EPERON G E, BURLAKOV V M, DOCAMPO P, et al. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells[J]. Advanced Functional Materials, 2014, 24(1):151-157. |
[45] | LIU M, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467):395-398. |
[46] | WANG J T W, BALL J M, BAREA E M, et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells[J]. Nano letters, 2013, 14(2):724-730. |
[47] | WOJCIECHOWSKI K, SALIBA M, LEIJTENS T, et al. Sub-150℃ processed meso-superstructured perovskite solar cells with enhanced efficiency[J]. Energy & Environmental Science, 2014, 7(3):1142-1147. |
[48] | CHEN Q, ZHOU H, HONG Z, et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process[J]. Journal of the American Chemical Society, 2013, 136(2):622-625. |
[49] | CHEN Y, ZHAO Y, LIANG Z. Non-thermal annealing fabrication of efficient planar perovskite solar cells with inclusion of NH4Cl[J]. Chemistry of Materials, 2015, 27(5):1448-1451. |
[50] | YI C, LI X, LUO J, et al. Perovskite photovoltaics with outstanding performance produced by chemical conversion of bilayer mesostructured lead halide/TiO2 films[J]. Advanced Materials, 2016, 28:2964-2970. |
[51] | LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107):643-647. |
[52] | BI D, MOON S J, HÄGGMAN L, et al. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures[J]. RSC Advances, 2013, 3(41):18762-18766. |
[53] | YANG X C, LIU W, REN P. All solid-state solar cells based on CH3NH3PbI3-sensitized TiO2 nanotube arrays[J]. Physica E:Low-dimensional Systems and Nanostructures, 2016, 83:322-328. |
[54] | GURINA G I, SAVCHENKO K V. Intercalation and formation of complexes in the system of lead (Ⅱ) iodide-ammonia[J]. Journal of Solid State Chemistry, 2004, 177(3):909-915. |
[55] | YE M, XIN X, LIN C, et al. High efficiency dye-sensitized solar cells based on hierarchically structured nanotubes[J]. Nano Letters, 2011, 11(8):3214-3220. |
[56] | BALL J M, LEE M M, HEY A, et al. Low-temperature processed meso-superstructured to thin-film perovskite solar cells[J]. Energy & Environmental Science, 2013, 6(6):1739-1743. |
[57] | XING G, MATHEWS N, SUN S, et al. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156):344-347. |
[58] | STRANKS S D, EPERON G E, GRANCINI G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156):341-344. |
[59] | LI W, LI J, WANG L, et al. Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance[J]. Journal of Materials Chemistry A, 2013, 1(38):11735-11740. |
[60] | CHEN H, PAN X, LIU W, et al. Efficient panchromatic inorganic-organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material[J]. Chemical Communications, 2013, 49(66):7277-7279. |
[61] | SHI J, DONG J, LÜ S, et al. Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells:high efficiency and junction property[J]. Applied Physics Letters, 2014, 104(6):063901. |
[62] | XU X B, LI S H, ZHANG H, et al. A power pack based on organometallic perovskite solar cell and supercapacitor[J]. ACS Nano, 2015, 9(2):1782-1787. |
[63] | CHEN W, WU Y Z, YUE Y F, et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers[J]. Science, 2015, 350(6263):944-948. |
[64] | NIU G, LI W, MENG F, et al. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells[J]. Mater. Chem. A., 2014, 2(3):705-710. |
[65] | MISRA R K, AHARON S, LI B L, et al. Temperature-and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight[J]. Phys. Chem. Lett., 2015, 6(3):326-330. |
[66] | YANG J L, SIEMPELKAMP B D, LIU D Y, et al. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques[J]. ACS Nano, 2015, 9(2):1955-1963. |
[67] | WANG Q Y, YANG X C, WANG X L, et al. Synthesis of N-doped TiO2 mesosponge by solvothermal transformation of anodic TiO2 nanotubes and enhanced photoelectrochemical performance[J]. Electrochimica Acta, 2012, 62:158-162. |
[68] | WANG Q Y, YANG X C, LIU D, et al. Fabrication, characterization and photocatalytic properties of Ag nanoparticles modified TiO2 NTs[J]. Alloy. Compd., 2012, 527:106-111. |
[69] | MALINKIEWICZ O, YELLA A, LEE Y H, et al. Perovskite solar cells employing organic charge-transport layers[J]. Nat. Photonics, 2014, 8(2):128-132. |
[70] | KIM J H, CHUEH C C, WILLIMAS, S T, et al. Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells[J]. Nanoscale, 2015, 7(41):17343-17349. |
[71] | XIAO J Y, SHI J J, LIU H B, et al. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material[J]. Adv. Energy Mater., 2015, 5(8):1401943. |
[72] | CHRISTIANS J A, FUNG R C M, KAMAT P V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide[J]. Am. Chem. Soc., 2014, 136(2):758-764. |
[73] | CHAVHAN S, MIGUEL O, GRANDE H J, et al. Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact[J]. Mater. Chem. A, 2014, 2(32):12754-12760. |
[74] | TRIFILETTI V, ROIATI V, COLELLA S, et al. NiO/MAPbI(3-x)Cl(x)/PCBM:a model case for an improved understanding of inverted mesoscopic solar cells[J]. ACS Appl. Mater. Interfaces, 2015, 7(7):4283-4289. |
[75] | NOEL N K, STRANKS S D, ABATE A, et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications[J]. Energy Environ. Sci., 2014, 7(9):3061-3068. |
[76] | RYU S, NOH J H, JEON N J, et al. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor[J]. Energy Environ. Sci., 2014, 7(8):2614-2618. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[3] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[4] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[5] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[6] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[7] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[8] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[9] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[10] | 代佳琳, 毕唯东, 雍玉梅, 陈文强, 莫晗旸, 孙兵, 杨超. 热物性对混合型CPCMs固液相变特性影响模拟研究[J]. 化工学报, 2023, 74(5): 1914-1927. |
[11] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[12] | 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274. |
[13] | 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259. |
[14] | 徐东, 田杜, 陈龙, 张禹, 尤庆亮, 胡成龙, 陈韶云, 陈建. 聚苯胺/二氧化锰/聚吡咯复合纳米球的制备及其电化学储能性[J]. 化工学报, 2023, 74(3): 1379-1389. |
[15] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1563
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 874
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||