化工学报 ›› 2017, Vol. 68 ›› Issue (6): 2501-2509.DOI: 10.11949/j.issn.0438-1157.20161754
莫淳1, 廖文杰2, 梁斌1,2, 李春1, 岳海荣1, 谢和平2
收稿日期:
2016-12-15
修回日期:
2017-03-07
出版日期:
2017-06-05
发布日期:
2017-06-05
通讯作者:
梁斌
基金资助:
国家自然科学基金重点项目(21336004)
MO Chun1, LIAO Wenjie2, LIANG Bin1,2, LI Chun1, YUE Hairong1, XIE Heping2
Received:
2016-12-15
Revised:
2017-03-07
Online:
2017-06-05
Published:
2017-06-05
Contact:
10.11949/j.issn.0438-1157.20161754
Supported by:
supported by the National Natural Science Foundation of China (21336004)
摘要:
利用工业固废活化非水溶性钾长石矿,矿化固定二氧化碳(CO2)并提钾工艺,是同时处理工业固废、开发钾资源、减排CO2等一举多得的CCUS路线。采用生命周期评价(LCA)方法,以生产含1 t K2O的钾肥为功能单元,以传统的高炉冶炼钾长石制可溶性钾肥并联产白水泥工艺作为参照,对比评价了两种钾长石-工业固废体系矿化CO2联产钾肥工艺过程的碳减排潜力和经济性。对工艺从原料开采、运输到产品生产的生命周期的温室气体排放量(简称“碳排放”)和成本进行了全流程的核算,研究了更全面的产品碳排放和成本分配方法。结果表明,无论是碳排放还是经济性,钾长石-工业固废体系矿化CO2联产钾肥工艺均较传统工艺有很大提高,碳减排潜力分别可达81.16%和20.48%左右,成本可节约34.75%和45.11%左右。
中图分类号:
莫淳, 廖文杰, 梁斌, 李春, 岳海荣, 谢和平. 工业固废活化钾长石-CO2矿化提钾的生命周期碳排放与成本评价[J]. 化工学报, 2017, 68(6): 2501-2509.
MO Chun, LIAO Wenjie, LIANG Bin, LI Chun, YUE Hairong, XIE Heping. Life-cycle greenhouse gas emissions and cost of potassium extraction and CO2 mineralization via K-feldspar—industrial solid waste calcination[J]. CIESC Journal, 2017, 68(6): 2501-2509.
[1] | LI H N, WEI Y M, MI Z F. China's carbon flow: 2008—2012 [J]. Energy Policy, 2015, 80: 45-53. |
[2] | MING Z, OUYANG S J, ZHANG Y J, et al. CCS technology development in China: Status, problems and countermeasures—based on SWOT analysis [J]. Renewable and Sustainable Energy Reviews, 2014, 39: 604-616. |
[3] | ALLEN S K, PLATTNER G, NAUELS A, et al. Climate Change 2013: The Physical Science Basis. An Overview of the Working Group 1 Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) [M]. 2007. |
[4] | MARCIUS E, BUNJE P. CCUS: Utilizing CO2 to reduce emissions [J]. Chemical Engineering Progress, 2016, 112 (6): 52-59. |
[5] | 中华人民共和国国家统计局. 中国统计年鉴-2016 [M]. 北京: 中国统计出版社, 2016. |
National Bureau of Statistics of China. China Statistical Yearbook-2016 [M]. Beijing: China Statistics Press, 2016. | |
[6] | 马鸿文, 苏双青, 刘浩, 等. 中国钾资源与钾盐工业可持续发展 [J]. 地学前缘, 2010, 17 (1): 294-310. |
MA H W, SU S Q, LIU H, et al. Potassium resource and sustainable development of potash salt industry in China [J]. Earth Science Frontiers, 2010, 17 (1): 294-310. | |
[7] | 王万金, 白志民, 马鸿文. 利用不溶性钾矿提钾的研究现状及展望 [J]. 地质科技情报, 1996, 15 (3): 60-64. |
WANG W J, BAI Z M, MA H W. Developments and prospects of extracting potash from insoluble potash ores [J]. Geological Science and Technology Information, 1996, 15 (3): 60-64. | |
[8] | YUAN B, LI C, LIANG B, et al. Evaluation for the process of mineralization of CO2 using natural K-feldspar and phosphogypsum to produce sulfate potassium [J]. Journal of Sichuan University, 2014, 46 (3): 168-174. |
[9] | YE L P, YUE H R, WANG Y F, et al. CO2 mineralization of activated K-feldspar + CaCl2 slag to fix carbon and produce soluble potash salt [J]. Industrial & Engineering Chemistry Research, 2014, 53 (26): 10557-10565. |
[10] | SHANGGUAN W J, SONG J M, YUE H R, et al. An efficient milling-assisted technology for K-feldspar processing, industrial waste treatment and CO2 mineralization [J]. Chemical Engineering Journal, 2016, 292: 255-263. |
[11] | YUAN B, LI C, LIANG B, et al. Extraction of potassium from K-feldspar via the CaCl2 calcination route [J]. Chinese Journal of Chemical Engineering, 2015, 23 (9): 1557-1564. |
[12] | GAN Z X, CUI Z, YUE H R, et al. An efficient methodology for utilization of K-feldspar and phosphogypsum with reduced energy consumption and CO2 emissions [J]. Chinese Journal of Chemical Engineering, 2016, 24 (11): 1541-1551. |
[13] | 束庆, 张旭. 生命周期评价和生命周期成本分析的整合方法研究 [J]. 同济大学学报(社会科学版), 2003, (4): 81-86. |
SHU Q, ZHANG X. Study on the way to integrate life cycle assessment and life cycle cost analysis [J]. Tongji University Journal (Social Science Section), 2003, (4): 81-86. | |
[14] | 乔玉栋, 高鑫, 李洪, 等. 泡沫碳化硅陶瓷波纹规整填料的全生命周期成本评价 [J]. 化工学报, 2016, 67 (8): 3459-3467. |
QIAO Y D, GAO X, LI H, et al. Life cycle cost evaluation of structured corrugation SiC-foam packing [J]. CIESC Journal, 2016, 67 (8): 3459-3467. | |
[15] | 钱宇, 杨思宇, 贾小平, 等. 能源和化工系统的全生命周期评价和可持续性研究 [J]. 化工学报, 2013, 64 (1): 133-147. |
QIAN Y, YANG S Y, JIA X P, et al. Life cycle assessment and sustainability of energy and chemical processes [J]. CIESC Journal, 2013, 64 (1): 133-147. | |
[16] | 黄智贤, 钱宇. 生命周期成本分析及其应用研究 [J]. 化工进展, 2007, 26 (8): 1186-1191. |
HUANG Z X, QIAN Y. Life cycle cost analysis and its application [J]. Chemical Industry and Engineering Progress, 2007, 26 (8): 1186-1191. | |
[17] | FINKBEINER M, INABA A, TAN R, et al. The new international standards for life cycle assessment: ISO 14040 and ISO 14044 [J]. International Journal of Life Cycle Assessment, 2006, 11 (2): 80-85. |
[18] | 王云, 赵永椿, 张军营, 等. 燃煤电厂醇胺化学吸收法捕集和封存CO2全生命周期碳排放分析 [J]. 动力工程学报, 2011, 31 (5): 362-368. |
WANG Y, ZHAO Y C, ZHANG J Y,et al. Life cycle carbon emission assessment for a coal-fired power plant using MEA CO2 capture and storage technology [J]. Journal of Chinese Society of Power Engineering, 2011, 31 (5): 362-368. | |
[19] | ROMAO I, NDUAGU E, FAGERLUND J, et al. CO2 fixation using magnesium silicate minerals (Ⅱ): Energy efficiency and integration with iron-and steelmaking [J]. Energy, 2012, 41 (1): 203-211. |
[20] | 兰方青, 旷戈. 钾长石-萤石-硫酸-氟硅酸体系提钾工艺研究 [J]. 化工生产与技术, 2011, 18 (1): 19-21. |
LAN F Q, KUANG G. The study on extracting potassium process of potash feldspar-fluorite-sulphuric acid-fluosilicic acid system [J]. Chemical Production and Technology, 2011, 18 (1): 19-21. | |
[21] | 聂轶苗, 马鸿文, 刘贺, 等. 水热条件下钾长石的分解反应机理 [J]. 硅酸盐学报, 2006, 34 (7): 846-850. |
NIE Y M, MA H W, LIU H, et al. Reactive mechanism of potassium feldspar dissolution under hydrothermal condition [J]. Journal of the Chinese Ceramic Society, 2006, 34 (7): 846-850. | |
[22] | 邱美娅. 动态水热法分解钾长石制备雪硅钙石的实验研究 [D]. 北京: 中国地质大学, 2005. |
QIU M Y. Synthesis of tobermorite by dynamical decomposing potassium feldspar: an experimental study [D]. Beijing: China University of Geosciences, 2005. | |
[23] | 池景良, 葛英华. 硅酸盐细菌解钾活性的研究 [J]. 微生物学杂志, 1999, 19 (2): 43-51. |
CHI J L, GE Y H. Study on potassium releasing activity of silicate bacteria [J]. Journal of Microbiology, 1999, 19 (2): 43-51. | |
[24] | WANG C, YUE H R, LI C, et al. Mineralization of CO2 using natural K-feldspar and industrial solid waste to produce soluble potassium [J]. Industrial & Engineering Chemistry Research, 2014, 53 (19): 7971-7978. |
[25] | 任志学. 高炉冶炼钾长石回收钾盐联产石膏熔渣白色水泥总结 [J]. 化肥工业, 1986, (3): 24-30. |
REN Z X. Summary of the technology for producing Potassium salt and white cement by smelting K-feldspar in blast furnace [J]. Chemical Fertilizer Industry, 1986, (3): 24-30. | |
[26] | 郭峰, 袁孝惇. 高炉冶炼钾长石适宜的操作制度 [J]. 化肥工业, 1986, (4): 29-33. |
GUO F, YUAN X D. Appropriate operating system of smelting K-feldspar in blast furnace [J]. Chemical Fertilizer Industry, 1986, (4): 29-33. | |
[27] | 刘光龙, 杨国兰, 任志学. 钾长石制碳酸钾联产白色熔融水泥 [J]. 无机盐工业, 1988, (1): 15-19. |
LIU G L, YANG G L, REN Z X. Potash feldspar production of potassium carbonate and white fused cement [J]. Inorganic Chemicals Industry, 1988, (1): 15-19. | |
[28] | 孙保金. 高炉冶炼钾长石回收钾盐的利用 [J]. 化肥工业, 1987, (4): 56-59. |
SUN B J. Recovery of potassium salt by smelting K-feldspar in blast furnace [J]. Chemical Fertilizer Industry, 1987, (4): 56-59. | |
[29] | 中国石化集团. 化工工艺设计手册 [M]. 北京: 化学工业出版社, 2009. |
Sinopec Group. Chemical Process Design Manual [M]. Beijing: Chemical Industry Press, 2009. | |
[30] | 四川大学与亿科环境. CLCD数据库v0.8[EB/OL]. [2016-10-31]. http://www.ike-global.com. |
Sichuan University and IKE Environmental Technology Co., Ltd. CLCD database v0.8[EB/OL]. [2016-10-31]. http://www.ike-global.com. | |
[31] | Swiss Centre of Life Cycle Inventories. Ecoinvent database v.2.2[EB/OL]. [2016-10-31]. http://ecoinvent.org. |
[32] | 付子航. 煤制天然气碳排放全生命周期分析及横向比较 [J]. 天然气工业, 2010, 30 (9): 100-104. |
FU Z H. Life cycle assessment of carbon emission from synthetic natural gas (SNG) and its horizontal comparison analysis [J]. Natural Gas Industry, 2010, 30 (9):100-104. | |
[33] | 张克舫. 醇胺吸收法燃煤电厂CO2捕集系统能量分析及优化 [D]. 北京: 北京工业大学, 2015. |
ZHANG K F. Energy analysis and optimization of MEA-absorption CO2 capture systems for coal-fired power plants [D]. Beijing: Beijing University of Technology, 2015. | |
[34] | 丁竑广, 丁汝斌, 杨兴志, 等. 磷石膏制硫酸联产水泥仍是其综合利用的有效途径 [J]. 硫磷设计与粉体工程, 2011, (1): 1-6. |
DING H G, DING R B, YANG X Z, et al. Phosphogypsum production of sulfuric acid and cement [J]. Sulphur Phosphorus & Bulk Materials Handling Related Engineering, 2011, (1): 1-6. | |
[35] | 徐齐胜, 殷立宝, 马晓茜,等. 燃煤电站工业污泥掺烧技术的全生命周期费用(LCC)分析 [J]. 环境工程学报, 2016, 10 (2): 858-866. |
XU Q S,YIN L B,MA X Q, et al. Whole life cycle cost (LCC) analysis of sludge-coal co-combustion technology in coal-fired power plant [J]. Chinese Journal of Environmental Engineering, 2016, 10 (2): 858-866. | |
[36] | SMIT M C. A north atlantic treaty organisation framework for life cycle costing [J]. International Journal of Computer Integrated Manufacturing, 2012, 25 (4): 444-456. |
[37] | HOCHSCHORNER E, NORING M. Practitioners' use of life cycle costing with environmental costs—a Swedish study [J]. International Journal of Life Cycle Assessment, 2011, 16 (9): 897-902. |
[38] | CIROTH A, HUPPES G, KLÖPFFER W, et al. Environmental Life Cycle Costing [M]. SETAC, CRC Press, 2008. |
[39] | 中科华碳信息技术研究院. 中国碳排放交易 [EB/OL]. [2016-6-20]. http://www.tanpaifang.com. |
Kelong Carbon Information Technology Research Institute. China's carbon emissions trading [EB/OL]. [2016-6-20]. http://www.tanpaifang.com. | |
[40] | 晏明朗. 湿法磷酸联产白石膏的方法 [J]. 磷肥与复肥, 2016, 31 (5): 29-32. |
YAN M L. Co-production of WPA and opal paste [J]. Phosphate & Compound Fertilizer, 2016, 31 (5):29-32. | |
[41] | 任必锐. 利用纯碱废液获得的高钙卤水制备氯化钙产品研究 [J]. 中国井矿盐, 2014, 45 (6): 15-16. |
REN B R. Study of calcium chloride products preparation with high calcium brine obtained by soda ash waste [J]. China Well and Rock Salt, 2014, 45 (6): 15-16. | |
[42] | 茅爱新. 氨碱法纯碱生产中废液及碱渣的综合利用 [J]. 化学工业与工程技术, 2001, 22 (2): 31-32. |
MAO A X. Comprehensive utilization of waste liquid and soda dregs in soda product ion by ammonia-soda process [J]. Journal of Chemical Industry and Engineering, 2001, 22 (2): 31-32.ugation SiC-foam packing[J]. CIESC Journal, 2016, 67(8):3459-3467. | |
[15] | 钱宇, 杨思宇, 贾小平, 等. 能源和化工系统的全生命周期评价和可持续性研究[J]. 化工学报, 2013, 64(1):133-147. QIAN Y, YANG S Y, JIA X P, et al. Life cycle assessment and sustainability of energy and chemical processes[J]. CIESC Journal, 2013, 64(1):133-147. |
[16] | 黄智贤, 钱宇. 生命周期成本分析及其应用研究[J]. 化工进展, 2007, 26(8):1186-1191. HUANG Z X, QIAN Y. Life cycle cost analysis and its application[J]. Chemical Industry and Engineering Progress, 2007, 26(8):1186-1191. |
[17] | FINKBEINER M, INABA A, TAN R, et al. The new international standards for life cycle assessment:ISO 14040 and ISO 14044[J]. International Journal of Life Cycle Assessment, 2006, 11(2):80-85. |
[18] | 王云, 赵永椿, 张军营, 等. 燃煤电厂醇胺化学吸收法捕集和封存CO2全生命周期碳排放分析[J]. 动力工程学报, 2011, 31(5):362-368. WANG Y, ZHAO Y C, ZHANG J Y,et al. Life cycle carbon emission assessment for a coal-fired power plant using MEA CO2 capture and storage technology[J]. Journal of Chinese Society of Power Engineering, 2011, 31(5):362-368. |
[19] | KHOO H H, SHARRATT P N, BU J, et al. Carbon capture and mineralization in Singapore:preliminary environmental impacts and costs via LCA[J]. Industrial & Engineering Chemistry Research, 2011, 50(19):11350-11357. |
[20] | ROMAO I, NDUAGU E, FAGERLUND J, et al. CO2 fixation using magnesium silicate minerals(Part 2):Energy efficiency and integration with iron-and steelmaking[J]. Energy, 2012, 41(1):203-211. |
[21] | 兰方青, 旷戈. 钾长石-萤石-硫酸-氟硅酸体系提钾工艺研究[J]. 化工生产与技术, 2011, 18(1):19-21. LAN F Q, KUANG G. The study on extracting potassium process of potash feldspar-fluorite-sulphuric acid-fluosilicic acid system[J]. Chemical Production and Technology, 2011, 18(1):19-21. |
[22] | 聂轶苗, 马鸿文, 刘贺, 等. 水热条件下钾长石的分解反应机理[J]. 硅酸盐学报, 2006, 34(7):846-850. NIE Y M, MA H W, LIU H, et al. Reactive mechanism of potassium feldspar dissolution under hydrothermal condition[J]. Journal of the Chinese ceramic society, 2006, 34(7):846-850. |
[23] | 邱美娅. 动态水热法分解钾长石制备雪硅钙石的实验研究[D]. 中国地质大学(北京), 2005. QIU M Y. Synthesis of tobermorite by dynamical decomposing potassium feldspar:An Experimental Study[D]. China University of Geosciences, 2005. |
池景良, 葛英华. 硅酸盐细菌解钾活性的研究[J]. 微生物学杂志, 1999, 19(2):43-51. CHI J L, GE Y H. Study on potassium releasing activity of silicate bacteria[J]. Journal of Microbiology, 1999, 19(2):43-51. | |
[24] | WANG C, YUE H R, LI C, et al. Mineralization of CO2 using natural K-feldspar and industrial solid waste to produce soluble potassium[J]. Industrial & Engineering Chemistry Research, 2014, 53(19):7971-7978. |
[25] | 任志学. 高炉冶炼钾长石回收钾盐联产石膏熔渣白色水泥总结[J]. 化肥工业, 1986(3):24-30. REN Z X. Summary of the technology for producing Potassium salt and white cement by smelting K-feldspar in blast furnace[J]. Chemical Fertilizer Industry, 1986(3):24-30. |
[26] | 郭峰, 袁孝惇. 高炉冶炼钾长石适宜的操作制度[J]. 化肥工业, 1986(4):29-33. GUO F, YUAN X D. Appropriate operating system of smelting K-feldspar in blast furnace[J]. Chemical Fertilizer Industry, 1986(4):29-33. |
[27] | 刘光龙, 杨国兰, 任志学. 钾长石制碳酸钾联产白色熔融水泥[J]. 无机盐工业, 1988(1):15-19. LIU G L, YANG G L, REN Z X. Potash feldspar production of potassium carbonate and white fused cement[J]. Inorganic Chemicals Industry, 1988(1):15-19. |
[28] | 孙保金. 高炉冶炼钾长石回收钾盐的利用[J]. 化肥工业, 1987(4):56-59. SUN B J. Recovery of potassium salt by smelting K-feldspar in blast furnace[J]. Chemical Fertilizer Industry, 1987(4):56-59. |
[29] | 中国石化集团. 化工工艺设计手册[M]. 北京:化学工业出版社, 2009. Sinopec Group. Chemical Process Design Manual[M]. Beijing:Chemical Industry Press, 2009. |
[30] | 四川大学与亿科环境. CLCD数据库v0.8[EB/OL].[2016-10-31]. http://www.ike-global.com. Sichuan University and IKE Environmental Technology Co., Ltd. CLCD database v0.8[EB/OL].[2016-10-31]. http://www.ike-global.com. |
[31] | Swiss Centre of Life Cycle Inventories. Ecoinvent database v.2.2[EB/OL].[2016-10-31]. http://ecoinvent.org. |
[32] | 付子航. 煤制天然气碳排放全生命周期分析及横向比较[J]. 天然气工业, 2010, 30(9):100-104. FU Z H. Life cycle assessment of carbon emission from synthetic natural gas (SNG) and its horizontal comparison analysis[J]. Natural Gas Industry, 2010, 30(9):100-104. |
[33] | 张克舫. 醇胺吸收法燃煤电厂CO2捕集系统能量分析及优化[D]. 北京工业大学, 2015. ZHANG K F. energy analysis and optimization of MEA-absorption CO2 capture systems for coal-fired power plants[D]. Beijing University of Technology, 2015. |
[34] | 丁竑广, 丁汝斌, 杨兴志, 等. 磷石膏制硫酸联产水泥仍是其综合利用的有效途径[J]. 硫磷设计与粉体工程, 2011(1):1-6. DING H G, DING R B, YANG X Z, et al. Phosphogypsum production of sulfuric acid and cement[J]. Sulphur Phosphorus & Bulk Materials Handling Related Engineering, 2011(1):1-6. |
[35] | 徐齐胜, 殷立宝, 马晓茜,等. 燃煤电站工业污泥掺烧技术的全生命周期费用(LCC)分析[J]. 环境工程学报, 2016, 10(2):858-866. XU Q S,YIN L B,MA X Q, et al. Whole life cycle cost(LCC) analysis of sludge-coal co-combustion technology in coal-fired power plant[J]. Chinese Journal of Environmental Engineering, 2016, 10(2):858-866. |
[36] | SMIT M C. A north atlantic treaty organisation framework for life cycle costing[J]. International Journal of Computer Integrated Manufacturing, 2012, 25(4):444-456. |
[37] | HOCHSCHORNER E, NORING M. Practitioners' use of life cycle costing with environmental costs-a Swedish study[J]. International Journal of Life Cycle Assessment, 2011, 16(9):897-902. |
[38] | CIROTH A, HUPPES G, KLÖPFFER W, et al. Environmental Life Cycle Costing[M]. SETAC, CRC Press, 2008. |
[39] | 中科华碳信息技术研究院. 中国碳排放交易[EB/OL].[2016-6-20]. http://www.tanpaifang.com. Kelong Carbon Information Technology Research Institute. China's carbon emissions trading[EB/OL].[2016-6-20]. http://www.tanpaifang.com. |
[40] | 晏明朗. 湿法磷酸联产白石膏的方法[J]. 磷肥与复肥, 2016, 31(05):29-32. YAN M L. Co-production of WPA and opal paste[J]. Phosphate & Compound Fertilizer, 2016, 31(5):29-32. |
[41] | 任必锐. 利用纯碱废液获得的高钙卤水制备氯化钙产品研究[J]. 中国井矿盐, 2014, 45(6):15-16. REN B R. Study of calcium chloride products preparation with high calcium brine obtained by soda ash waste[J]. China Well and Rock Salt, 2014, 45(6):15-16. |
[42] | 茅爱新. 氨碱法纯碱生产中废液及碱渣的综合利用[J]. 化学工业与工程技术, 2001, 22(2):31-32. MAO A X. Comprehensive utilization of waste liquid and Soda dregs in soda product ion by ammonia-soda process[J]. Journal of Chemical Industry and Engineering, 2001, 22(2):31-32. |
[1] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[2] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[3] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[4] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
[5] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[6] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[7] | 刘定平, 陈爱桦, 张向阳, 何文浩, 王海. 铝灰半干法水解脱氮研究[J]. 化工学报, 2023, 74(3): 1294-1302. |
[8] | 李沐紫, 贾国伟, 赵砚珑, 张鑫, 李建荣. 金属有机框架材料对非二氧化碳温室气体捕捉研究进展[J]. 化工学报, 2023, 74(1): 365-379. |
[9] | 王煦清, 严圣林, 朱礼涛, 张希宝, 罗正鸿. 填料塔中有机胺吸收CO2气液传质的研究进展[J]. 化工学报, 2023, 74(1): 237-256. |
[10] | 罗欣宜, 冯超, 刘晶, 乔瑜. 污泥不同热处理工艺产物磷的浸出回收实验研究[J]. 化工学报, 2022, 73(9): 4034-4044. |
[11] | 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789. |
[12] | 李淼, 赵虹, 姜标, 陈思远, 闫龙. 煤制乙炔关键中间体BaC2合成的热力学分析[J]. 化工学报, 2022, 73(5): 1908-1919. |
[13] | 郭志强, 燕可洲, 张吉元, 柳丹丹, 高阳艳, 郭彦霞. 煤矸石/粉煤灰对赤泥钠化还原焙烧反应的影响机制[J]. 化工学报, 2022, 73(5): 2194-2205. |
[14] | 许世佩, 王超, 李庆远, 张炳康, 许世伟, 张雪琴, 王诗颖, 丛梦晓. 氧化钙对油基钻屑热脱附产物影响的研究[J]. 化工学报, 2022, 73(4): 1724-1731. |
[15] | 叶茂林, 谭烽华, 李宇萍, 廖玉河, 王晨光, 马隆龙. 农林废弃物气化合成混合醇生命周期环境影响分析[J]. 化工学报, 2022, 73(3): 1369-1378. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||