[1] |
WORSLEY M A, PAUZAUSKIE P J, OLSON T Y, et al. Synthesis of graphene aerogel with high electrical conductivity[J]. J. Am. Chem. Soc., 2010, 132(40):14067-14069.
|
[2] |
HU H, ZHAO Z B, WAN W B, et al. Polymer/graphene hybrid aerogel with high compressibility, conductivity, and "sticky" superhydrophobicity[J]. ACS Applied Materials & Interfaces, 2014, 6(5):3242-3249.
|
[3] |
REN L, HUI K N, HUI K S, et al. 3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage[J]. Scientific Reports, 2015, 5:14229-14230.
|
[4] |
HUANG J Q, WANG Z Y, XU Z L, et al. Three-dimensional porous graphene aerogel cathode with high sulfur loading and embedded TiO2 nanoparticles for advanced lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2016, 8(42):28663-28670.
|
[5] |
张丽芳, 魏伟, 吕伟, 等. 石墨烯基宏观体:制备, 性质及潜在应用[J]. 新型炭材料, 2013, 28(3):161-171. ZHANG L F, WEI W, LÜ W, et al. Graphene-based macroform:preparation, properties and applications[J]. New Carbon Materials, 2013, 28(3):161-171.
|
[6] |
PAPANDREA B, XU X, et al. Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium-sulfur battery[J]. Nano Research, 2016, 9(1):240-248.
|
[7] |
XU Y X, SHENG K X, LI C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4(7):4324-4330.
|
[8] |
FAN Z J, YAN J. A three-dimensional carbon nanotube/graphene sandwich and its application as electode in supercapacitors[J]. Adv. Mater., 2010, 22(33):3723-3728.
|
[9] |
AN Y F, YANG Y, HU Z G, et al. High-performance symmetric supercapacitors based on carbon nanosheets framework with graphene hydrogel architecture derived from cellulose acetate[J]. Journal of Power Sources, 2017, 337(1):45-53.
|
[10] |
CAO X H, SHI Y M, SHI W H, et al. Preparation of novel 3D graphene networks for supercapacitor applications[J]. Small, 2011, 7(22):3163-3168.
|
[11] |
XIONG C Y, LI T H, DANG A, et al. Two-step approach of fabrication of three-dimensional MnO2-graphene-carbon nanotube hybrid as a binder-free supercapacitor electrode[J]. Journal of Power Sources, 2016, 306:602-610.
|
[12] |
HAO J N, LIAO Y Q, ZHONG Y Y, et al. Three-dimensional graphene layers prepared by a gas-foaming method for supercapacitor applications[J]. Carbon, 2015, 94:879-887.
|
[13] |
GAO Y D, ZHANG Y Y, ZHANG Y, et al. Three-dimensional paper-like graphene framework with highly orientated laminar structure as binder-free supercapacitor electrode[J]. Journal of Energy Chemistry, 2016, 25(1):49-54.
|
[14] |
吴永红, 张兵, 肖大君. 宁夏无烟煤基活性炭的制备及吸附性能研究[J]. 化工新型材料, 2015, 43(11):105-107. WU Y H, ZHANG B, XIAO D J, Research on the preparation of activated carbon based on Ningxia anthracite and its adsorption performance[J]. New Chemical Materials, 2015, 43(11):105-107.
|
[15] |
LUO J J, LIU Y F, JIANG C F, et al. Experimental and modeling study of methane adsorption on activated carbon derived from anthracite[J]. Journal of Chemical & Engineering Data, 2011, 56(12):4919-4926.
|
[16] |
李书荣, 张文辉, 王岭,等. 太西无烟煤制活性炭孔隙结构分析[J]. 洁净煤技术, 2001, 7(3):54-56. LI S R, ZHANG W H, WANG L, et al. Pore structure analysis of Taixi anthracite based activated carbon[J]. Clean Coal Technology, 2001, 7(3):54-56
|
[17] |
王鹏飞. 无烟超低灰纯煤冶炼高品质碳化硅工艺研究[J]. 煤炭加工与综合利用, 2014, (5):62-66. WANG P F. Study of metallurgical process of high-quality silicon carbide from ultra-low ash anthracite[J]. Coal Processing & Comprehensive Utilization, 2014, (5):62-66.
|
[18] |
WANG T S, LI Y W, SANG S B. Nickel-catalyzed construction of heat conductive network in electrically calcined anthracite (ECA) based carbon blocks[J]. Chinas Refractories, 2017, 26(1):31-37.
|
[19] |
张亚婷, 李景凯, 周安宁, 等. Fe2O3/煤基石墨烯纳米复合材料制备及其电化学性能研究[J]. 化工新型材料, 2015, 43(6):104-107. ZHANG Y T, LI J K, ZHOU A N, Preparation of Fe2O3/coal-based graphene composite and its electrochemical performance[J]. New Chemical Materials, 2015, 43(6):104-107.
|
[20] |
KULKARNI S B, PATILP U M, SHACKERY I, et al. High-performance supercapacitor electrode based on a polyaniline nanofibers/3D graphene framework as an efficient charge transporter[J]. Journal of Materials Chemistry A, 2014, 2(14):4989-4998.
|
[21] |
GAO Z Y, WANG F, CHANG J L, et al. Chemically grafted graphene-polyaniline composite for application in supercapacitor[J]. Electrochimica Acta, 2014, 133(7):325-334.
|
[22] |
ZHANG K, ZHANG L L, ZHAO X S, et al. Graphene/polyaniline nanofiber composites as supercapacitor electrodes[J]. Chemistry of Materials, 2010, 22(4):1392-1401.
|
[23] |
CHO S, SHIN K H, JANG J. Enhanced electrochemical performance of highly porous supercapacitor electrodes based on solution processed polyaniline thin films[J]. Applied Materials & Interfaces, 2017, 5(18):9186-9193.
|
[24] |
MITCHELL E, CANDLER J, SOUZA F D, et al. High performance supercapacitor based on multilayer of polyaniline and graphene oxide[J]. Synthetic Metals, 2015, 199(199):214-218.
|
[25] |
SHEN B S, LANG J W, GUO R S, et al. Engineering the electrochemical capacitive properties of microsupercapacitors based on graphene quantum dots/MnO2 using ionic liquid gel electrolytes[J]. ACS Applied Materials & Interfaces, 2015, 7(45):25378-25389.
|
[26] |
WANG Y G, XIA Y Y. Hybrid aqueous energy storage cells using activated carbon and lithium-intercalated compounds(Ⅰ):The C/LiMn2O4 system[J]. Journal of the Electrochemical Society, 2006, 153(2):A450-A454.
|
[27] |
常郑, 王欢文, 胡中爱, 等. 热膨胀制备含氧官能团化的石墨烯及其电化学电容性能[J]. 材料导报, 2012, 26(18):49-53. CHANG Z, WANG H W, HU Z A, et al. Synthesis of graphene with oxygen-containing functional groups via thermal expension and its electrochemical capacitive performances[J]. Materials Review, 2012, 26(18):49-53.
|
[28] |
YU D S, DAI L M. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors[J]. Journal of Physical Chemistry Letters, 2010, 1(2):467-470.
|
[29] |
黄振楠, 寇生中, 金东东, 等. 氢氧化镍/还原氧化石墨烯复合物的超级电容性能[J]. 功能材料, 2015, 46(5):5084-5088. HUANG Z N, KOU S Z, JIN D D, et al. Performance of Ni(OH)2/reduced graphene oxides composites for supercapacitors[J]. Journal of Functional Materials, 2015, 46(5):5084-5088.
|
[30] |
DONG L B, XU C J, YANG Q, et al. High-performance compressible supercapacitors based on functionally synergic multiscale carbon composite textiles[J]. Journal of Materials Chemistry A, 2015, 3(8):4729-4737.
|