[1] |
Sharma C S, Tiwari M K, Zimmermann S, et al. Energy efficient hotspot-targeted embedded liquid cooling of electronics[J]. Applied Energy, 2015, 138:414-422.
|
[2] |
Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5):126-129.
|
[3] |
Cho H J, Preston D J, Zhu Y, et al. Nanoengineered materials for liquid-vapour phase-change heat transfer[J]. Nature Reviews Materials, 2016, 2(2):16092.
|
[4] |
Fletcher N H. Size effect in heterogeneous nucleation[J]. Journal of Chemical Physics, 1958, 29(3):572-576.
|
[5] |
Kim S, Kim K J. Dropwise condensation modeling suitable for superhydrophobic surfaces[J]. Journal of Heat Transfer, 2011, 133(8):081502.
|
[6] |
Daniel A, Christophe F, Betz A R, et al. Surface engineering for phase change heat transfer:a review[J]. MRS Energy & Sustainability-A Review Journal, 2014, 1:1-40.
|
[7] |
Miljkovic N, Enright R, Wang E N. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces[J]. ACS Nano, 2012, 6(2):1776-1785.
|
[8] |
Nam Y, Kim H, Shin S. Energy and hydrodynamic analyses of coalescence-induced jumping droplets[J]. Applied Physics Letters, 2013, 103(16):161601.
|
[9] |
Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature, 2001, 414:33-34.
|
[10] |
Hou Y, Yu M, Chen X, et al. Recurrent filmwise and dropwise condensation on a beetle mimetic surface[J]. ACS Nano, 2015, 9(1):71-81.
|
[11] |
Boreyko J B, Hansen R R, Murphy K R, et al. Controlling condensation and frost growth with chemical micropatterns[J]. Scientific Reports, 2016, 6:19131.
|
[12] |
Xie J, Xu J, He X, et al. Large scale generation of micro-droplet array by vapor condensation on mesh screen piece[J]. Scientific Reports, 2017, 7:39932.
|
[13] |
Wang Y, Zhang L, Wu J, et al. A facile strategy for the fabrication of a bioinspired hydrophilic-superhydrophobic patterned surface for highly efficient fog-harvesting[J]. Journal of Materials Chemistry A, 2015, 3(37):18963-18969.
|
[14] |
Chatterjee A, Derby M M, Peles Y, et al. Condensation heat transfer on patterned surfaces[J]. International Journal of Heat & Mass Transfer, 2013, 66(66):889-897.
|
[15] |
Chatterjee A, Derby M M, Peles Y, et al. Enhancement of condensation heat transfer with patterned surfaces[J]. International Journal of Heat & Mass Transfer, 2014, 71(4):675-681.
|
[16] |
Chen X, Derby M M. Combined visualization and heat transfer measurements for steam flow condensation in hydrophilic and hydrophobic mini-gaps[J]. Journal of Heat Transfer, 2016, 138(9):091503.
|
[17] |
Fang C, Steinbrenner J E, Wang F M, et al. Impact of wall hydrophobicity on condensation flow and heat transfer in silicon microchannels[J]. Journal of Micromechanics & Microengineering, 2010, 20(4):045018.
|
[18] |
DERBY M M, CHATTERJEE A, PELES Y, et al. Flow condensation heat transfer enhancement in a mini-channel with hydrophobic and hydrophilic patterns[J]. International Journal of Heat & Mass Transfer, 2014, 68(1):151-160.
|
[19] |
KUMAGAI S, TANAKA S, KATSUDA H, et al. On the enhancement of filmwise condensation heat transfer by means of the coexistence with dropwise condensation sections[J]. Experimental Heat Transfer, 2007, 4(1) 71-82.
|
[20] |
PENG B, MA X, ZHONG L, et al. Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic-hydrophilic hybrid surfaces[J]. International Journal of Heat & Mass Transfer, 2015, 83:27-38.
|
[21] |
GARIMELLA M M, KOPPU S, KADLASKAR S S, et al. Difference in growth and coalescing patterns of droplets on bi-philic surfaces with varying spatial distribution[J]. Journal of Colloid & Interface Science, 2017, 505:1065-1073.
|
[22] |
BAI H, WANG L, JU J, et al. Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns[J]. Advanced Materials, 2014, 26 (29):5025-5030.
|
[23] |
MACNER A M, DANIEL S, STEEN P H. Condensation on surface energy gradient shifts drop size distribution toward small drops[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2014, 30(7):1788-1798.
|
[24] |
GHOSH A, BEAINI S, ZHANG J, et al. Enhancing dropwise condensation through bioinspired wettability patterning[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2014, 30(43):13103-13115.
|
[25] |
HOLMAN J P, GAJDA W J. Experimental Methods for Engineers[M]. 4th ed. New York:McGraw-Hill, 1994
|
[26] |
KIM S M, MUDAWAR I. Universal approach to predicting heat transfer coefficient for condensing mini/micro-channel flow[J]. International Journal of Heat & Mass Transfer, 2013, 56(1/2):238-250.
|
[27] |
CAREY V P. Liquid-vapor Phase-change Phenomena[M]. 2nd ed. CRC Press, 2007:169-172.
|
[28] |
马学虎, 兰忠, 王凯, 等. 舞动的液滴:界面现象与过程调控[J]. 化工学报, 2018, 69(1):9-43. MA X H, LAN Z, WANG K, et al. Dancing droplet:interface phenomena and process regulation[J]. CIESC Journal, 2018, 69(1):9-43.
|
[29] |
王宏, 廖强, 朱恂. 梯度表面能材料上液滴运动机理[J]. 化工学报, 2007, 58(9):2313-2320. WANG H, LIAO Q, ZHU X, et al. Mechanism of liquid droplet movement on surface with gradient surface energy[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(9):2313-2320.
|
[30] |
谢剑, 刘琪, 何孝天, 等.气体剪切下液滴临界滑动无量纲准则[J]. 工程热物理学报, 2017, 38(5):1033-1038. XIE J, LIU Q, HE X T, et al. Dimensionless critical criterion for the sliding of droplet on tilt surface in shear flow[J]. Journal of Engineering Thermophysics, 2017, 38(5):1033-1038.
|