化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 257-265.doi: 10.11949/0438-1157.20201554

• 流体力学与传递现象 • 上一篇    下一篇

水平管内冷凝流动的稳定性

赵文一1(),匡以武1,王文1(),张红星2,苗建印2   

  1. 1.上海交通大学机械与动力工程学院,上海 200240
    2.空间热控技术北京市重点实验室,北京 100190
  • 收稿日期:2020-11-02 修回日期:2021-01-15 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 王文 E-mail:yiyiyi@sjtu.edu.cn;wenwang@sjtu.edu.cn
  • 作者简介:赵文一(1996—),女,硕士研究生,yiyiyi@sjtu.edu.cn
  • 基金资助:
    国家自然科学青年基金项目(51906148)

Stability of condensing flow in a horizontal tube

ZHAO Wenyi1(),KUANG Yiwu1,WANG Wen1(),ZHANG Hongxing2,MIAO Jianyin2   

  1. 1.School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2.Beijing Key Laboratory of Space Thermal Control Technology, Beijing 100190, China
  • Received:2020-11-02 Revised:2021-01-15 Published:2021-06-20 Online:2021-06-20
  • Contact: WANG Wen E-mail:yiyiyi@sjtu.edu.cn;wenwang@sjtu.edu.cn

摘要:

管内冷凝换热流动在紧凑型两相热控系统中比较常见,本文关注于冷凝两相流中的不稳定性。首先对工质在冷凝器中的热力学过程进行建模,然后利用Lyapunov稳定性理论讨论了冷凝流动过程中流动压降发生振荡的机理。发现失稳区间的质量流量开始点对应的出口工质干度为1,而失稳区间的结束点对应的工质出口干度通常在0.8左右。在大入口过热度、小管径以及低热通量下,冷凝器的压降-流量曲线会出现负斜率,工作流体若进入负斜率区域,会导致压力振荡,使得系统的运行变得不稳定。

关键词: 凝结, 建模, 两相流, 压力振荡, 不稳定性

Abstract:

The condensing flow widely appeared in compact thermal management system. Thus, this work modelled and discussed the pressure drop oscillation of working fluids to reveal the flow instability of condenser. The mechanism of pressure drop oscillation of condensing flow was analyzed based on Lyapunov instability principle. The flow drift would occur and trigger the flow instability in the condenser channel, when the working fluid operates on the negative slope region of pressure-drop flow curve. The results indicated that the onset-instability of condensing flow with the outlet quality by 1, and flow instability would be ended for the outlet quality of working fluid with the quality of 0.8. In addition, the much higher inlet super, smaller pipe diameter and lower heat flux would be easier to generate the negative slope on the pressure-drop flow curve of the condenser. As a result, the pressure drop oscillation and the unstable operation would be occurred in the condensing flow system.

Key words: condensation, modeling, two-phase flow, pressure oscillation, instability

中图分类号: 

  • TK 124

图1

水平管内流动冷凝各部分压降-流量曲线"

图2

模型预测与试验结果"

图3

压降与流量的水动力学曲线"

图4

过热度对压降的影响"

图5

管径对压降的影响"

图6

热通量对压降的影响"

图7

饱和温度对压降的影响"

图8

饱和温度对两相压降梯度的影响"

1 Mudawar I. Assessment of high-heat-flux thermal management schemes [J]. IEEE Transactions on Components and Packaging Technologies, 2001, 24(2): 122-141.
2 Lee H, Mudawar I, Hasan M M. Experimental and theoretical investigation of annular flow condensation in microgravity [J]. International Journal of Heat and Mass Transfer, 2013, 61: 293-309.
3 Anderson T M, Mudawar I. Microelectronic cooling by enhanced pool boiling of a dielectric fluorocarbon liquid [J]. Journal of Heat Transfer, 1989, 111(3): 752-759.
4 Willingham T C, Mudawar I. Forced-convection boiling and critical heat flux from a linear array of discrete heat sources [J]. International Journal of Heat and Mass Transfer, 1992, 35(11): 2879-2890.
5 Kuang Y W, Wang W, Miao J Y, et al. Flow boiling of ammonia and flow instabilities in mini-channels [J]. Applied Thermal Engineering, 2017, 113: 831-842.
6 Monde M. Critical heat flux in saturated forced convective boiling on a heated disk with an impinging jet [J]. Wärme - und Stoffübertragung, 1985, 19(3): 205-209.
7 Wadsworth D C, Mudawar I. Enhancement of single-phase heat transfer and critical heat flux from an ultra-high-flux simulated microelectronic heat source to a rectangular impinging jet of dielectric liquid [J]. Journal of Heat Transfer, 1992, 114(3): 764-768.
8 Rybicki J R, Mudawar I. Single-phase and two-phase cooling characteristics of upward-facing and downward-facing sprays [J]. International Journal of Heat and Mass Transfer, 2006, 49(1/2): 5-16.
9 Lin L C, Ponnappan R. Heat transfer characteristics of spray cooling in a closed loop [J]. International Journal of Heat and Mass Transfer, 2003, 46(20): 3737-3746.
10 Kuang Y W, Wang W, Zhuan R, et al. Simulation of boiling flow in evaporator of separate type heat pipe with low heat flux [J]. Annals of Nuclear Energy, 2015, 75: 158-167.
11 Chen M M. An analytical study of laminar film condensation (Ⅱ): Single and multiple horizontal tubes [J]. Journal of Heat Transfer, 1961, 83(1): 55-60.
12 Roques J F, Dupont V, Thome J R. Falling film transitions on plain and enhanced tubes [J]. Journal of Heat Transfer, 2002, 124(3): 491-499.
13 Soliman M, Schuster J R, Berenson P J. A general heat transfer correlation for annular flow condensation [J]. Journal of Heat Transfer, 1968, 90(2): 267-274.
14 Dobson M K, Chato J C. Condensation in smooth horizontal tubes [J]. Journal of Heat Transfer, 1998, 120(1): 193-213.
15 Quan X J, Cheng P, Wu H Y. Transition from annular flow to plug/slug flow in condensation of steam in microchannels [J]. International Journal of Heat and Mass Transfer, 2008, 51(3/4): 707-716.
16 Kim S M, Kim J, Mudawar I. Flow condensation in parallel micro-channels (I): Experimental results and assessment of pressure drop correlations [J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 971-983.
17 Brown W F, Westendorf W H. Stability of intermixing of high-velocity vapor with its subcooled liquid cocurrent streams [R]. Ohio: NASA, 1966.
18 Soliman M, Berenson P J. Flow stability and gravitational effects in condenser tubes [C]// Proceeding of International Heat Transfer Conference 4.Paris-Versailles, France, Connecticut: Begellhouse, 1970.
19 Rabas T J, Minard P G. Two types of flow instabilities occurring inside horizontal tubes with complete condensation [J]. Heat Transfer Engineering, 1987, 8(1): 40-49.
20 Teng H, Cheng P, Zhao T S. Instability of condensate film and capillary blocking in small-diameter-thermosyphon condensers [J]. International Journal of Heat and Mass Transfer, 1999, 42(16): 3071-3083.
21 Bhatt B L, Wedekind G L. A self-sustained oscillatory flow phenomenon in two-phase condensing flow systems [J]. Journal of Heat Transfer, 1980, 102(4): 694-700.
22 Boyer B D, Robinson G E, Hughes T G. Experimental investigation of flow regimes and oscillatory phenomena of condensing steam in a single vertical annular passage [J]. International Journal of Multiphase Flow, 1995, 21(1): 61-74.
23 Bhatt B L, Wedekind G L, Jung K. Effects of two-phase pressure drop on the self-sustained oscillatory instability in condensing flows [J]. Journal of Heat Transfer, 1989, 111(2): 538-545.
24 Kobus C J, Wedekind G L, Bhatt B L. Predicting the onset of a low-frequency, limit-cycle type of oscillatory flow instability in multitube condensing flow systems [J]. Journal of Heat Transfer, 2001, 123(2): 319-330.
25 McAdams W H, Wood W K, Bryan R L. Vaporization inside horizontal tubes (Ⅱ): Benzene-oil mixtures [J]. Trans. ASME, 1942, 64(3): 193-200.
26 Lockhart R W, Martinelli R C. Proposed correlation of data for isothermal two-phase, two-component flow in pipes [J]. Chemical Engineering Progress1949, 45(1): 39-48.
27 Kim S M, Mudawar I. Universal approach to predicting two-phase frictional pressure drop for mini/micro-channel saturated flow boiling [J]. International Journal of Heat and Mass Transfer, 2013, 58(1/2): 718-734.
28 Friedel L. Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow [C]// Proc. of European Two-Phase Flow Group Meet. Ispra, Italy, 1979: 485-491.
29 Zivi S M. Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production [J]. Journal of Heat Transfer, 1964, 86(2): 247-251.
30 Xiao J G, Hrnjak P. Pressure drop of R134a, R32 and R1233zd(E) in diabatic conditions during condensation from superheated vapor [J]. International Journal of Heat and Mass Transfer, 2018, 122: 442-450.
31 Ding W. Self-Excited Vibration [M]. Beijing: Tsinghua University Press, 2009: 99-199.
32 罗森诺. 传热学手册[M]. 北京: 科学出版社, 1985: 459-469.
Rohsenow W M. Handbook of Heat Transfer [M]. Beijing: Science Press, 1985: 459-469.
[1] 周乐, 沈程凯, 吴超, 侯北平, 宋执环. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165.
[2] 王琨, 侍洪波, 谭帅, 宋冰, 陶阳. 局部时差约束邻域保持嵌入算法在故障检测中的应用[J]. 化工学报, 2022, 73(7): 3109-3119.
[3] 闫美月, 邓坚, 潘良明, 马在勇, 李想, 邓杰文, 何清澈. 基于流量振荡的窄矩形通道内临界热通量机理模型[J]. 化工学报, 2022, 73(7): 2962-2970.
[4] 赵庆杰, 胡晓红, 张超, 凡凤仙. 蒸汽在含有不可溶核和可溶无机盐的细颗粒物表面的核化特性[J]. 化工学报, 2022, 73(7): 3251-3261.
[5] 李亚飞, 邓建强, 何阳. 跨临界CO2快速膨胀过程中非平衡冷凝和闪蒸机理的数值研究[J]. 化工学报, 2022, 73(7): 2912-2923.
[6] 李雯, 兰忠, 强伟丽, 任文芝, 杜宾港, 马学虎. 蒸汽冷凝近壁过渡区团簇演化特性[J]. 化工学报, 2022, 73(7): 2865-2873.
[7] 宋健斐, 孙立强, 解明, 魏耀东. 旋风分离器内气相旋转流不稳定性的实验研究[J]. 化工学报, 2022, 73(7): 2858-2864.
[8] 汪帆, 刘岩博, 李康丽, 童丽, 金美堂, 汤伟伟, 陈明洋, 龚俊波. 溶液结晶中的介尺度成核过程研究进展[J]. 化工学报, 2022, 73(6): 2318-2333.
[9] 蒋鸣, 周强. 气固流化床介尺度结构形成机制及过滤曳力模型研究进展[J]. 化工学报, 2022, 73(6): 2468-2485.
[10] 刘怡琳, 李钰, 余亚雄, 黄哲庆, 周强. 基于重置温度方法的双参数介尺度气固传热模型构建[J]. 化工学报, 2022, 73(6): 2612-2621.
[11] 王忠东, 朱春英, 马友光, 付涛涛. 并行微通道内液液两相流及介尺度效应[J]. 化工学报, 2022, 73(6): 2563-2572.
[12] 施炜斌, 龙姗姗, 杨晓钢, 蔡心悦. 计及气泡诱导与剪切湍流的气泡破碎、湍流相间扩散及传质模型[J]. 化工学报, 2022, 73(6): 2573-2588.
[13] 张文龙,宁尚雷,靳海波,马磊,何广湘,杨索和,郭晓燕,张荣月. 鼓泡塔内空气-醋酸体系流体力学参数的CFD-PBM耦合模型数值模拟[J]. 化工学报, 2022, 73(6): 2589-2602.
[14] 季超, 刘炜, 漆虹. 基于空冷的疏水陶瓷膜冷凝器用于烟气脱湿过程强化的实验研究[J]. 化工学报, 2022, 73(5): 2174-2182.
[15] 殷亚然, 朱星星, 张先明, 朱春英, 付涛涛, 马友光. 微通道内醇胺/离子液体复配水溶液吸收CO2的传质特性[J]. 化工学报, 2022, 73(5): 1930-1939.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!