化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 257-265.doi: 10.11949/0438-1157.20201554
ZHAO Wenyi1(),KUANG Yiwu1,WANG Wen1(
),ZHANG Hongxing2,MIAO Jianyin2
摘要:
管内冷凝换热流动在紧凑型两相热控系统中比较常见,本文关注于冷凝两相流中的不稳定性。首先对工质在冷凝器中的热力学过程进行建模,然后利用Lyapunov稳定性理论讨论了冷凝流动过程中流动压降发生振荡的机理。发现失稳区间的质量流量开始点对应的出口工质干度为1,而失稳区间的结束点对应的工质出口干度通常在0.8左右。在大入口过热度、小管径以及低热通量下,冷凝器的压降-流量曲线会出现负斜率,工作流体若进入负斜率区域,会导致压力振荡,使得系统的运行变得不稳定。
中图分类号:
1 | Mudawar I. Assessment of high-heat-flux thermal management schemes [J]. IEEE Transactions on Components and Packaging Technologies, 2001, 24(2): 122-141. |
2 | Lee H, Mudawar I, Hasan M M. Experimental and theoretical investigation of annular flow condensation in microgravity [J]. International Journal of Heat and Mass Transfer, 2013, 61: 293-309. |
3 | Anderson T M, Mudawar I. Microelectronic cooling by enhanced pool boiling of a dielectric fluorocarbon liquid [J]. Journal of Heat Transfer, 1989, 111(3): 752-759. |
4 | Willingham T C, Mudawar I. Forced-convection boiling and critical heat flux from a linear array of discrete heat sources [J]. International Journal of Heat and Mass Transfer, 1992, 35(11): 2879-2890. |
5 | Kuang Y W, Wang W, Miao J Y, et al. Flow boiling of ammonia and flow instabilities in mini-channels [J]. Applied Thermal Engineering, 2017, 113: 831-842. |
6 | Monde M. Critical heat flux in saturated forced convective boiling on a heated disk with an impinging jet [J]. Wärme - und Stoffübertragung, 1985, 19(3): 205-209. |
7 | Wadsworth D C, Mudawar I. Enhancement of single-phase heat transfer and critical heat flux from an ultra-high-flux simulated microelectronic heat source to a rectangular impinging jet of dielectric liquid [J]. Journal of Heat Transfer, 1992, 114(3): 764-768. |
8 | Rybicki J R, Mudawar I. Single-phase and two-phase cooling characteristics of upward-facing and downward-facing sprays [J]. International Journal of Heat and Mass Transfer, 2006, 49(1/2): 5-16. |
9 | Lin L C, Ponnappan R. Heat transfer characteristics of spray cooling in a closed loop [J]. International Journal of Heat and Mass Transfer, 2003, 46(20): 3737-3746. |
10 | Kuang Y W, Wang W, Zhuan R, et al. Simulation of boiling flow in evaporator of separate type heat pipe with low heat flux [J]. Annals of Nuclear Energy, 2015, 75: 158-167. |
11 | Chen M M. An analytical study of laminar film condensation (Ⅱ): Single and multiple horizontal tubes [J]. Journal of Heat Transfer, 1961, 83(1): 55-60. |
12 | Roques J F, Dupont V, Thome J R. Falling film transitions on plain and enhanced tubes [J]. Journal of Heat Transfer, 2002, 124(3): 491-499. |
13 | Soliman M, Schuster J R, Berenson P J. A general heat transfer correlation for annular flow condensation [J]. Journal of Heat Transfer, 1968, 90(2): 267-274. |
14 | Dobson M K, Chato J C. Condensation in smooth horizontal tubes [J]. Journal of Heat Transfer, 1998, 120(1): 193-213. |
15 | Quan X J, Cheng P, Wu H Y. Transition from annular flow to plug/slug flow in condensation of steam in microchannels [J]. International Journal of Heat and Mass Transfer, 2008, 51(3/4): 707-716. |
16 | Kim S M, Kim J, Mudawar I. Flow condensation in parallel micro-channels (I): Experimental results and assessment of pressure drop correlations [J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 971-983. |
17 | Brown W F, Westendorf W H. Stability of intermixing of high-velocity vapor with its subcooled liquid cocurrent streams [R]. Ohio: NASA, 1966. |
18 | Soliman M, Berenson P J. Flow stability and gravitational effects in condenser tubes [C]// Proceeding of International Heat Transfer Conference 4.Paris-Versailles, France, Connecticut: Begellhouse, 1970. |
19 | Rabas T J, Minard P G. Two types of flow instabilities occurring inside horizontal tubes with complete condensation [J]. Heat Transfer Engineering, 1987, 8(1): 40-49. |
20 | Teng H, Cheng P, Zhao T S. Instability of condensate film and capillary blocking in small-diameter-thermosyphon condensers [J]. International Journal of Heat and Mass Transfer, 1999, 42(16): 3071-3083. |
21 | Bhatt B L, Wedekind G L. A self-sustained oscillatory flow phenomenon in two-phase condensing flow systems [J]. Journal of Heat Transfer, 1980, 102(4): 694-700. |
22 | Boyer B D, Robinson G E, Hughes T G. Experimental investigation of flow regimes and oscillatory phenomena of condensing steam in a single vertical annular passage [J]. International Journal of Multiphase Flow, 1995, 21(1): 61-74. |
23 | Bhatt B L, Wedekind G L, Jung K. Effects of two-phase pressure drop on the self-sustained oscillatory instability in condensing flows [J]. Journal of Heat Transfer, 1989, 111(2): 538-545. |
24 | Kobus C J, Wedekind G L, Bhatt B L. Predicting the onset of a low-frequency, limit-cycle type of oscillatory flow instability in multitube condensing flow systems [J]. Journal of Heat Transfer, 2001, 123(2): 319-330. |
25 | McAdams W H, Wood W K, Bryan R L. Vaporization inside horizontal tubes (Ⅱ): Benzene-oil mixtures [J]. Trans. ASME, 1942, 64(3): 193-200. |
26 | Lockhart R W, Martinelli R C. Proposed correlation of data for isothermal two-phase, two-component flow in pipes [J]. Chemical Engineering Progress1949, 45(1): 39-48. |
27 | Kim S M, Mudawar I. Universal approach to predicting two-phase frictional pressure drop for mini/micro-channel saturated flow boiling [J]. International Journal of Heat and Mass Transfer, 2013, 58(1/2): 718-734. |
28 | Friedel L. Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow [C]// Proc. of European Two-Phase Flow Group Meet. Ispra, Italy, 1979: 485-491. |
29 | Zivi S M. Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production [J]. Journal of Heat Transfer, 1964, 86(2): 247-251. |
30 | Xiao J G, Hrnjak P. Pressure drop of R134a, R32 and R1233zd(E) in diabatic conditions during condensation from superheated vapor [J]. International Journal of Heat and Mass Transfer, 2018, 122: 442-450. |
31 | Ding W. Self-Excited Vibration [M]. Beijing: Tsinghua University Press, 2009: 99-199. |
32 | 罗森诺. 传热学手册[M]. 北京: 科学出版社, 1985: 459-469. |
Rohsenow W M. Handbook of Heat Transfer [M]. Beijing: Science Press, 1985: 459-469. |
[1] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
[2] | 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012. |
[3] | 时国华, 何林珅, 赵玺灵, 张世钢. 余热回收喷淋塔的烟气颗粒物脱除特性研究[J]. 化工学报, 2023, 74(4): 1735-1745. |
[4] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[5] | 任金胜, 刘克润, 焦志伟, 刘家祥, 于源. 涡流空气分级机近导叶处团聚体解团机理研究[J]. 化工学报, 2023, 74(4): 1528-1538. |
[6] | 郑书闽, 郭鹏程, 颜建国, 王帅, 李文博, 周淇. 微小通道内过冷流动沸腾阻力特性实验及预测研究[J]. 化工学报, 2023, 74(4): 1549-1560. |
[7] | 白剑钊, 郭子轩, 王德武, 刘燕, 王若瑾, 唐猛, 张少峰. 摇摆对气液并流模式立体旋流筛板压降的影响研究[J]. 化工学报, 2023, 74(2): 707-720. |
[8] | 杨星宇, 马优, 朱春英, 付涛涛, 马友光. 梳状并行微通道内液液分布规律研究[J]. 化工学报, 2023, 74(2): 698-706. |
[9] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[10] | 盛林, 昌宇, 邓建, 骆广生. 阶梯式T型微通道内有序气泡群的形成和流动特性研究[J]. 化工学报, 2023, 74(1): 416-427. |
[11] | 鲁军辉, 李俊明. H2O-CO2、H2O-N2、H2O-He水平管外自然对流凝结换热特性研究[J]. 化工学报, 2022, 73(9): 3870-3879. |
[12] | 苏巧玲, 王军锋, 张伟, 詹水清, 吴天一. 低电导率工质中气泡的极化运动实验研究[J]. 化工学报, 2022, 73(9): 3861-3869. |
[13] | 张童, 杨扬, 叶丁丁, 陈蓉, 朱恂, 廖强. 催化剂分布对可渗透阳极微流体燃料电池性能特性影响的研究[J]. 化工学报, 2022, 73(9): 4156-4162. |
[14] | 赵庆杰, 胡晓红, 张超, 凡凤仙. 蒸汽在含有不可溶核和可溶无机盐的细颗粒物表面的核化特性[J]. 化工学报, 2022, 73(7): 3251-3261. |
[15] | 周乐, 沈程凯, 吴超, 侯北平, 宋执环. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165. |
|