1 |
Li M, Li C, Blackman B R K, et al. Mimicking nature to control bio-material surface wetting and adhesion[J]. International Materials Reviews, 2022, 67(6): 658-681.
|
2 |
Feng R, Song F, Xu C, et al. A Quadruple-Biomimetic surface for spontaneous and efficient fog harvesting[J]. Chemical Engineering Journal, 2021, 422: 130119.
|
3 |
Edalatpour M, Murphy K R, Mukherjee R, et al. Bridging-droplet thermal diodes[J]. Advanced Functional Materials, 2020, 30(43): 2004451.
|
4 |
孙芹, 屈健, 袁建平. 等截面和变截面通道硅基微型脉动热管传热特性比较[J]. 化工学报, 2017, 68(5): 1803-1810.
|
|
Sun Q, Qu J, Yuan J P. Heat transfer performance comparison of silicon-based micro oscillating heat pipes with and without expanding channels[J]. CIESC Journal, 2017, 68(5): 1803-1810.
|
5 |
Sun J X, Jiang X Y, Weisensee P B. Enhanced water nucleation and growth based on microdroplet mobility on lubricant-infused surfaces[J]. Langmuir, 2021, 37(44): 12790-12801.
|
6 |
Cho H J, Preston D J, Zhu Y, et al. Nanoengineered materials for liquid-vapour phase-change heat transfer[J]. Nature Reviews Materials, 2017, 2: 16092.
|
7 |
Zanganeh P, Goharrizi A S, Ayatollahi S, et al. Nano-coated condensation surfaces enhanced the productivity of the single-slope solar still by changing the condensation mechanism[J]. Journal of Cleaner Production, 2020, 265: 121758.
|
8 |
郑智颖, 李凤臣, 李倩, 等. 海水淡化技术应用研究及发展现状[J]. 科学通报, 2016, 61(21): 2344-2370.
|
|
Zheng Z Y, Li F C, Li Q, et al. State-of-the-art of R&D on seawater desalination technology[J]. Science Bulletin, 2016, 61(21): 2344-2370.
|
9 |
Tammann G, Boehme W. Die zahl der wassertröpfchen Bei der kondensation auf verschiedenen festen stoffen[J]. Annalen Der Physik, 1935, 414(1): 77-80.
|
10 |
刘天庆, 穆春丰, 夏松柏, 等. 滴状冷凝初始液滴的形成机理[J]. 化工学报, 2007, 58(4): 821-828.
|
|
Liu T Q, Mu C F, Xia S B, et al. Mechanism of initial droplet formation in dropwise condensation[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(4): 821-828.
|
11 |
Rose J W. Further aspects of dropwise condensation theory[J]. International Journal of Heat and Mass Transfer, 1976, 19(12): 1363-1370.
|
12 |
Glicksman L R, Hunt A W. Numerical simulation of dropwise condensation[J]. International Journal of Heat and Mass Transfer, 1972, 15(11): 2251-2269.
|
13 |
McCormick J L, Westwater J W. Nucleation sites for dropwise condensation[J]. Chemical Engineering Science, 1965, 20(12): 1021-1036.
|
14 |
宋天一, 兰忠, 马学虎. 初始冷凝液滴尺寸分布的分子团聚模型[J]. 化工学报, 2010, 61(4): 839-843.
|
|
Song T Y, Lan Z, Ma X H. Molecular clustering analysis on initial droplet size distribution[J]. CIESC Journal, 2010, 61(4): 839-843.
|
15 |
王广厚. 团簇物理学[M]. 上海: 上海科学技术出版社, 2003.
|
|
Wang G H. Cluster Physics[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2003.
|
16 |
Lan Z, Wen R F, Wang A L, et al. A droplet model in steam condensation with noncondensable gas[J]. International Journal of Thermal Sciences, 2013, 68: 1-7.
|
17 |
Lan Z, Wang D, Cao K, et al. Dynamic behaviors of condensing clusters based on Rayleigh scattering experiment[J]. Scientific Reports, 2017, 7: 987.
|
18 |
Ranathunga D T S, Shamir A, Dai X M, et al. Molecular dynamics simulations of water condensation on surfaces with tunable wettability[J]. Langmuir, 2020, 36(26): 7383-7391.
|
19 |
Niu D, Tang G H. The effect of surface wettability on water vapor condensation in nanoscale[J]. Scientific Reports, 2016, 6: 19192.
|
20 |
Xu W, Lan Z, Peng B L, et al. Effect of surface free energies on the heterogeneous nucleation of water droplet: a molecular dynamics simulation approach[J]. Journal of Chemical Physics, 2015, 142(5): 054701.
|
21 |
Gao S, Liu W, Liu Z C. Tuning nanostructured surfaces with hybrid wettability areas to enhance condensation[J]. Nanoscale, 2019, 11(2): 459-466.
|
22 |
Huang D B, Quan X J, Cheng P. An investigation on vapor condensation on nanopillar array surfaces by molecular dynamics simulation[J]. International Communications in Heat and Mass Transfer, 2018, 98: 232-238.
|
23 |
Wang Q, Xie H, Hu Z M, et al. The impact of the electric field on surface condensation of water vapor: insight from molecular dynamics simulation[J]. Nanomaterials, 2019, 9(1): 64.
|
24 |
Niu D, Gao H T, Tang G H, et al. Droplet nucleation and growth in the presence of noncondensable gas: a molecular dynamics study[J]. Langmuir, 2021, 37(30): 9009-9016.
|
25 |
Li L, Du X Z. Influence of noncondensable gas to condensation of water in a nanoscale space using molecular dynamics simulation[J]. Journal of Enhanced Heat Transfer, 2020, 27(1): 85-100.
|
26 |
Lan Z, Chen F Y, Qiang W L, et al. Direct observation of water clusters for surface design[J]. Chemical Engineering Science, 2020, 217: 115475.
|
27 |
Abascal J L F, Vega C. A general purpose model for the condensed phases of water: TIP4P/2005[J]. Journal of Chemical Physics, 2005, 123(23): 234505.
|
28 |
Stillinger F H. Rigorous basis of Frenkel-band theory of association equilibrium[J]. Journal of Chemical Physics, 1963, 38(7): 1486-1494.
|
29 |
Coelho L A F, de Oliveira J V, Tavares F W, et al. Role of attractive forces in self-diffusion and mutual diffusion in dense simple fluids and real substances[J]. Fluid Phase Equilibria, 2002, 194: 1131-1140.
|
30 |
Yezdimer E M, Chialvo A A, Cummings P T. Examination of chain length effects on the solubility of alkanes in near-critical and supercritical aqueous solutions[J]. Journal of Physical Chemistry B, 2001, 105(4): 841-847.
|
31 |
Feng J, Zhong L S, Guo Z G. Sprayed hieratical biomimetic superhydrophilic-superhydrophobic surface for efficient fog harvesting[J]. Chemical Engineering Journal, 2020, 388: 124283.
|
32 |
Bai H Y, Zhao T H, Wang X S, et al. Cactus kirigami for efficient fog harvesting: simplifying a 3D cactus into 2D paper art[J]. Journal of Materials Chemistry A, 2020, 8(27): 13452-13458.
|
33 |
Peng Y, He Y X, Yang S, et al. Magnetically induced fog harvesting via flexible conical arrays[J]. Advanced Functional Materials, 2015, 25(37): 5967-5971.
|
34 |
Roth-Nebelsick A, Ebner M, Miranda T, et al. Leaf surface structures enable the endemic Namib desert grass Stipagrostis sabulicola to irrigate itself with fog water[J]. Journal of the Royal Society Interface, 2012, 9(73): 1965-1974.
|
35 |
Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature, 2001, 414(6859): 33-34.
|