化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3251-3261.doi: 10.11949/0438-1157.20220017
Qingjie ZHAO1(),Xiaohong HU1,2,Chao ZHANG1,2,Fengxian FAN1,2(
)
摘要:
鉴于生物质直接燃烧和生物质与煤混合燃烧发电过程排放细颗粒物表面通常含有一定量的可溶无机盐,基于经典异质核化理论,综合考虑晶核生长的表面扩散和直接沉积机制建立了改进的蒸汽在包含球形不可溶核和可溶无机盐的细颗粒物表面的异质核化模型,利用数值模拟方法,对4种组分颗粒(不可溶颗粒以及3种含可溶无机盐的颗粒)的异质核化特性进行对比分析。结果表明,在中等接触角条件下,不可溶颗粒的临界晶核形成自由能和临界晶核半径最大,含KCl颗粒次之,含NaCl颗粒再次之,含CaCl2颗粒最小;临界晶核条件下,表面扩散机制与直接沉积机制引起的水分子添加速率之比随颗粒半径的增大先略有增加而后保持不变,随接触角的增大而单调下降。研究还发现,当接触角较小时,含可溶无机盐颗粒的成核临界饱和度低于不可溶颗粒;当接触角较大时,含KCl和NaCl颗粒的成核临界饱和度先后超过不可溶颗粒。
中图分类号:
1 | Yang W, Pudasainee D, Gupta R, et al. An overview of inorganic particulate matter emission from coal/biomass/MSW combustion: sampling and measurement, formation, distribution, inorganic composition and influencing factors[J]. Fuel Processing Technology, 2021, 213: 106657. |
2 | Wu Z H, Fan F X, Yan J P, et al. An adaptable direct simulation Monte Carlo method for simulating acoustic agglomeration of solid particles[J]. Chemical Engineering Science, 2022, 249: 117298. |
3 | Lu M S, Fang M X, He M C, et al. Visualization research on electric agglomeration characteristics of fine particles[J]. Powder Technology, 2018, 333: 115-121. |
4 | Fan F X, Zhang S H, Wang W Y, et al. Numerical investigation of PM2.5 size enlargement by heterogeneous condensation for particulate abatement[J]. Process Safety and Environmental Protection, 2019, 125: 197-206. |
5 | Fan F X, Zhang S H, Peng Z B, et al. Numerical investigation of heterogeneous nucleation of water vapour on PM10 for particulate abatement[J]. The Canadian Journal of Chemical Engineering, 2019, 97(4): 930-939. |
6 | 王健, 潘伶, 王帅, 等. 工程相变凝并器内超细颗粒长大与脱除性能分析[J]. 化工学报, 2020, 71(11): 5090-5098. |
Wang J, Pan L, Wang S, et al. Analysis of ultrafine particles growth and removal in phase-transition agglomerator for engineering[J]. CIESC Journal, 2020, 71(11): 5090-5098. | |
7 | Fan F X, Yang L J, Yan J P, et al. Experimental investigation on removal of coal-fired fine particles by a condensation scrubber[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(8): 1353-1360. |
8 | Liu J, Chen D L, Lu J D. Experiment on fine particle purification by flue gas condensation for industrial boilers[J]. Fuel, 2017, 199: 684-696. |
9 | Zhang Y M, Yu G Y, Jin R Z, et al. Investigation into water vapor and flue gas temperatures on the separation capability of a novel cyclone separator[J]. Powder Technology, 2020, 361: 171-178. |
10 | Zhang C, Ma N, Fan F X, et al. Hygroscopic growth of aerosol particles consisted of oxalic acid and its internal mixture with ammonium sulfate for the relative humidity ranging from 80% to 99.5%[J]. Atmospheric Environment, 2021, 252: 118318. |
11 | Qian M, Ma J. Heterogeneous nucleation on convex spherical substrate surfaces: a rigorous thermodynamic formulation of Fletcher's classical model and the new perspectives derived[J]. The Journal of Chemical Physics, 2009, 130(21): 214709. |
12 | Ruckenstein E, Berim G O, Narsimhan G. A novel approach to the theory of homogeneous and heterogeneous nucleation[J]. Advances in Colloid and Interface Science, 2015, 215: 13-27. |
13 | Maximoff S N, Salehi A, Rostami A A. Molecular dynamics simulations of homogeneous nucleation of liquid phase in highly supersaturated propylene glycol vapors[J]. Journal of Aerosol Science, 2021, 154: 105743. |
14 | 余廷芳, 高巨, 熊桂龙, 等. 基于分子运动学的水汽在细颗粒表面异质核化的数值模拟[J]. 化工学报, 2020, 71(7): 3071-3079. |
Yu T F, Gao J, Xiong G L, et al. Numerical simulation of heterogeneous nucleation of water vapor on surface of fine particles based on molecular kinetics[J]. CIESC Journal, 2020, 71(7): 3071-3079. | |
15 | 郭阳, 凡凤仙, 张超, 等. 氨法脱硫系统排放细颗粒物的异质核化特性[J]. 动力工程学报, 2022, 42(1): 49-55. |
Guo Y, Fan F X, Zhang C, et al. Heterogeneous nucleation behavior of fine particles from ammonia-based desulfurization system[J]. Journal of Chinese Society of Power Engineering, 2022, 42(1): 49-55. | |
16 | Fletcher N H. Size effect in heterogeneous nucleation[J]. The Journal of Chemical Physics, 1958, 29(3): 572-576. |
17 | Gorbunov B, Hamilton R. Water nucleation on aerosol particles containing both soluble and insoluble substances[J]. Journal of Aerosol Science, 1997, 28(2): 239-248. |
18 | Fan F X, Yang L J, Yan J P, et al. Numerical analysis of water vapor nucleation on PM2.5 from municipal solid waste incineration[J]. Chemical Engineering Journal, 2009, 146(2): 259-265. |
19 | 颜金培, 杨林军, 凡凤仙, 等. 基于分形理论的水汽在燃煤细颗粒表面异质核化数值研究[J]. 中国电机工程学报, 2009, 29(11): 50-56. |
Yan J P, Yang L J, Fan F X, et al. Numerical analysis of water vapor nucleation on fine particles from coal combustion based on fractal model[J]. Proceedings of the CSEE, 2009, 29(11): 50-56. | |
20 | Iwamatsu M. Line-tension-induced scenario of heterogeneous nucleation on a spherical substrate and in a spherical cavity[J]. The Journal of Chemical Physics, 2015, 143(1): 014701. |
21 | Luo X S, Fan Y, Qin F H, et al. A kinetic model for heterogeneous condensation of vapor on an insoluble spherical particle[J]. The Journal of Chemical Physics, 2014, 140(2): 024708. |
22 | 凡凤仙, 杨林军, 袁竹林, 等. 水汽在细微颗粒表面异质核化数值分析[J]. 东南大学学报(自然科学版), 2007, 37(5): 833-838. |
Fan F X, Yang L J, Yuan Z L, et al. Numerical analysis of water vapor nucleation on fine particles[J]. Journal of Southeast University (Natural Science Edition), 2007, 37(5): 833-838. | |
23 | Pruppacher H R, Klett J D. Microphysics of Clouds and Precipitation[M]. 2nd ed. New York: Springer, 2010: 100-135. |
24 | Clegg S L, Brimblecombe P, Wexler A S. Thermodynamic model of the system H+-NH4 +-Na+-SO4 2--NO3 --Cl--H2O at 298.15 K[J]. The Journal of Physical Chemistry A, 1998, 102(12): 2155-2171. |
25 | Zuend A, Marcolli C, Luo B P, et al. A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients[J]. Atmospheric Chemistry and Physics, 2008, 8(16): 4559-4593. |
26 | Määttänen A, Vehkamäki H, Lauri A, et al. Two-component heterogeneous nucleation kinetics and an application to Mars[J]. The Journal of Chemical Physics, 2007, 127(13): 134710. |
27 | Lv L, Zhang J, Xu J C, et al. Effects of surface topography of SiO2 particles on the heterogeneous condensation process observed by environmental scanning electron microscopy[J]. Aerosol Science and Technology, 2021, 55(8): 920-929. |
[1] | 李雯, 兰忠, 强伟丽, 任文芝, 杜宾港, 马学虎. 蒸汽冷凝近壁过渡区团簇演化特性[J]. 化工学报, 2022, 73(7): 2865-2873. |
[2] | 乃学瑛, 吴鹏, 程远, 肖剑飞, 刘鑫, 董亚萍. 水热生长碱式硫酸镁纳米线结晶动力学研究[J]. 化工学报, 2022, 73(7): 3038-3044. |
[3] | 牛犁, 刘梦溪, 王海北. 密相流化床中介尺度流动结构的流体力学特性研究[J]. 化工学报, 2022, 73(6): 2622-2635. |
[4] | 陆勇, 刘对平, 李晨阳, 周吉彬, 叶茂. 光纤内窥图像法测量MTO催化剂表观形貌及其积炭量的实验研究[J]. 化工学报, 2022, 73(6): 2662-2668. |
[5] | 石孝刚, 王成秀, 高金森, 蓝兴英. 提升管反应器介尺度结构影响规律的数值模拟研究[J]. 化工学报, 2022, 73(6): 2708-2721. |
[6] | 李铁男, 赵碧丹, 赵鹏, 张永民, 王军武. 气固流化床启动阶段挡板内构件受力特性的CFD-DEM模拟[J]. 化工学报, 2022, 73(6): 2649-2661. |
[7] | 潘大伟, 汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银. 微流控乳液模板法构建功能微颗粒过程中介尺度结构定向调控的研究进展[J]. 化工学报, 2022, 73(6): 2306-2317. |
[8] | 汪帆, 刘岩博, 李康丽, 童丽, 金美堂, 汤伟伟, 陈明洋, 龚俊波. 溶液结晶中的介尺度成核过程研究进展[J]. 化工学报, 2022, 73(6): 2318-2333. |
[9] | 杨晖, 李宏泽, 陈泉, 郑泽希, 李然, 孙其诚. 从质量流向漏斗流转变过程中的动力学分析[J]. 化工学报, 2022, 73(6): 2722-2731. |
[10] | 孔令菲, 陈延佩, 王维. 气固流态化中颗粒介尺度结构的动力学研究[J]. 化工学报, 2022, 73(6): 2486-2495. |
[11] | 陈泉, 郑泽希, 李然, 孙其诚, 杨晖. 散斑能见度光谱法测量筒仓内颗粒流的颗粒温度[J]. 化工学报, 2022, 73(6): 2603-2611. |
[12] | 唐天琪, 何玉荣. 磁场对湿颗粒流化床系统中介尺度结构影响机制研究[J]. 化工学报, 2022, 73(6): 2636-2648. |
[13] | 季超, 刘炜, 漆虹. 基于空冷的疏水陶瓷膜冷凝器用于烟气脱湿过程强化的实验研究[J]. 化工学报, 2022, 73(5): 2174-2182. |
[14] | 苏晓辉, 张弛, 徐志锋, 金辉, 王治国. 黏弹性表面活性剂溶液中颗粒沉降特性研究[J]. 化工学报, 2022, 73(5): 1974-1985. |
[15] | 王烨, 朱欣悦, 孙振东. 基于POD降阶模型的正弦波翅片扁管管翅式换热器流动与传热特性分析[J]. 化工学报, 2022, 73(5): 1986-1994. |
|