化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3251-3261.doi: 10.11949/0438-1157.20220017
Qingjie ZHAO1(),Xiaohong HU1,2,Chao ZHANG1,2,Fengxian FAN1,2(
)
摘要:
鉴于生物质直接燃烧和生物质与煤混合燃烧发电过程排放细颗粒物表面通常含有一定量的可溶无机盐,基于经典异质核化理论,综合考虑晶核生长的表面扩散和直接沉积机制建立了改进的蒸汽在包含球形不可溶核和可溶无机盐的细颗粒物表面的异质核化模型,利用数值模拟方法,对4种组分颗粒(不可溶颗粒以及3种含可溶无机盐的颗粒)的异质核化特性进行对比分析。结果表明,在中等接触角条件下,不可溶颗粒的临界晶核形成自由能和临界晶核半径最大,含KCl颗粒次之,含NaCl颗粒再次之,含CaCl2颗粒最小;临界晶核条件下,表面扩散机制与直接沉积机制引起的水分子添加速率之比随颗粒半径的增大先略有增加而后保持不变,随接触角的增大而单调下降。研究还发现,当接触角较小时,含可溶无机盐颗粒的成核临界饱和度低于不可溶颗粒;当接触角较大时,含KCl和NaCl颗粒的成核临界饱和度先后超过不可溶颗粒。
中图分类号:
1 | Yang W, Pudasainee D, Gupta R, et al. An overview of inorganic particulate matter emission from coal/biomass/MSW combustion: sampling and measurement, formation, distribution, inorganic composition and influencing factors[J]. Fuel Processing Technology, 2021, 213: 106657. |
2 | Wu Z H, Fan F X, Yan J P, et al. An adaptable direct simulation Monte Carlo method for simulating acoustic agglomeration of solid particles[J]. Chemical Engineering Science, 2022, 249: 117298. |
3 | Lu M S, Fang M X, He M C, et al. Visualization research on electric agglomeration characteristics of fine particles[J]. Powder Technology, 2018, 333: 115-121. |
4 | Fan F X, Zhang S H, Wang W Y, et al. Numerical investigation of PM2.5 size enlargement by heterogeneous condensation for particulate abatement[J]. Process Safety and Environmental Protection, 2019, 125: 197-206. |
5 | Fan F X, Zhang S H, Peng Z B, et al. Numerical investigation of heterogeneous nucleation of water vapour on PM10 for particulate abatement[J]. The Canadian Journal of Chemical Engineering, 2019, 97(4): 930-939. |
6 | 王健, 潘伶, 王帅, 等. 工程相变凝并器内超细颗粒长大与脱除性能分析[J]. 化工学报, 2020, 71(11): 5090-5098. |
Wang J, Pan L, Wang S, et al. Analysis of ultrafine particles growth and removal in phase-transition agglomerator for engineering[J]. CIESC Journal, 2020, 71(11): 5090-5098. | |
7 | Fan F X, Yang L J, Yan J P, et al. Experimental investigation on removal of coal-fired fine particles by a condensation scrubber[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(8): 1353-1360. |
8 | Liu J, Chen D L, Lu J D. Experiment on fine particle purification by flue gas condensation for industrial boilers[J]. Fuel, 2017, 199: 684-696. |
9 | Zhang Y M, Yu G Y, Jin R Z, et al. Investigation into water vapor and flue gas temperatures on the separation capability of a novel cyclone separator[J]. Powder Technology, 2020, 361: 171-178. |
10 | Zhang C, Ma N, Fan F X, et al. Hygroscopic growth of aerosol particles consisted of oxalic acid and its internal mixture with ammonium sulfate for the relative humidity ranging from 80% to 99.5%[J]. Atmospheric Environment, 2021, 252: 118318. |
11 | Qian M, Ma J. Heterogeneous nucleation on convex spherical substrate surfaces: a rigorous thermodynamic formulation of Fletcher's classical model and the new perspectives derived[J]. The Journal of Chemical Physics, 2009, 130(21): 214709. |
12 | Ruckenstein E, Berim G O, Narsimhan G. A novel approach to the theory of homogeneous and heterogeneous nucleation[J]. Advances in Colloid and Interface Science, 2015, 215: 13-27. |
13 | Maximoff S N, Salehi A, Rostami A A. Molecular dynamics simulations of homogeneous nucleation of liquid phase in highly supersaturated propylene glycol vapors[J]. Journal of Aerosol Science, 2021, 154: 105743. |
14 | 余廷芳, 高巨, 熊桂龙, 等. 基于分子运动学的水汽在细颗粒表面异质核化的数值模拟[J]. 化工学报, 2020, 71(7): 3071-3079. |
Yu T F, Gao J, Xiong G L, et al. Numerical simulation of heterogeneous nucleation of water vapor on surface of fine particles based on molecular kinetics[J]. CIESC Journal, 2020, 71(7): 3071-3079. | |
15 | 郭阳, 凡凤仙, 张超, 等. 氨法脱硫系统排放细颗粒物的异质核化特性[J]. 动力工程学报, 2022, 42(1): 49-55. |
Guo Y, Fan F X, Zhang C, et al. Heterogeneous nucleation behavior of fine particles from ammonia-based desulfurization system[J]. Journal of Chinese Society of Power Engineering, 2022, 42(1): 49-55. | |
16 | Fletcher N H. Size effect in heterogeneous nucleation[J]. The Journal of Chemical Physics, 1958, 29(3): 572-576. |
17 | Gorbunov B, Hamilton R. Water nucleation on aerosol particles containing both soluble and insoluble substances[J]. Journal of Aerosol Science, 1997, 28(2): 239-248. |
18 | Fan F X, Yang L J, Yan J P, et al. Numerical analysis of water vapor nucleation on PM2.5 from municipal solid waste incineration[J]. Chemical Engineering Journal, 2009, 146(2): 259-265. |
19 | 颜金培, 杨林军, 凡凤仙, 等. 基于分形理论的水汽在燃煤细颗粒表面异质核化数值研究[J]. 中国电机工程学报, 2009, 29(11): 50-56. |
Yan J P, Yang L J, Fan F X, et al. Numerical analysis of water vapor nucleation on fine particles from coal combustion based on fractal model[J]. Proceedings of the CSEE, 2009, 29(11): 50-56. | |
20 | Iwamatsu M. Line-tension-induced scenario of heterogeneous nucleation on a spherical substrate and in a spherical cavity[J]. The Journal of Chemical Physics, 2015, 143(1): 014701. |
21 | Luo X S, Fan Y, Qin F H, et al. A kinetic model for heterogeneous condensation of vapor on an insoluble spherical particle[J]. The Journal of Chemical Physics, 2014, 140(2): 024708. |
22 | 凡凤仙, 杨林军, 袁竹林, 等. 水汽在细微颗粒表面异质核化数值分析[J]. 东南大学学报(自然科学版), 2007, 37(5): 833-838. |
Fan F X, Yang L J, Yuan Z L, et al. Numerical analysis of water vapor nucleation on fine particles[J]. Journal of Southeast University (Natural Science Edition), 2007, 37(5): 833-838. | |
23 | Pruppacher H R, Klett J D. Microphysics of Clouds and Precipitation[M]. 2nd ed. New York: Springer, 2010: 100-135. |
24 | Clegg S L, Brimblecombe P, Wexler A S. Thermodynamic model of the system H+-NH4 +-Na+-SO4 2--NO3 --Cl--H2O at 298.15 K[J]. The Journal of Physical Chemistry A, 1998, 102(12): 2155-2171. |
25 | Zuend A, Marcolli C, Luo B P, et al. A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients[J]. Atmospheric Chemistry and Physics, 2008, 8(16): 4559-4593. |
26 | Määttänen A, Vehkamäki H, Lauri A, et al. Two-component heterogeneous nucleation kinetics and an application to Mars[J]. The Journal of Chemical Physics, 2007, 127(13): 134710. |
27 | Lv L, Zhang J, Xu J C, et al. Effects of surface topography of SiO2 particles on the heterogeneous condensation process observed by environmental scanning electron microscopy[J]. Aerosol Science and Technology, 2021, 55(8): 920-929. |
[1] | 代佳琳, 毕唯东, 雍玉梅, 陈文强, 莫晗旸, 孙兵, 杨超. 热物性对混合型CPCMs固液相变特性影响模拟研究[J]. 化工学报, 2023, 74(5): 1914-1927. |
[2] | 赵健, 周兴超, 夏丹, 董航. 机械搅拌对原油储罐射流加热过程传热特性的影响规律研究[J]. 化工学报, 2023, 74(5): 1982-1999. |
[3] | 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012. |
[4] | 丁俊华, 俞树荣, 王世鹏, 洪先志, 包鑫, 丁雪兴. 多重效应下超高速干气密封流场模拟及密封性能试验[J]. 化工学报, 2023, 74(5): 2088-2099. |
[5] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[6] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[7] | 任金胜, 刘克润, 焦志伟, 刘家祥, 于源. 涡流空气分级机近导叶处团聚体解团机理研究[J]. 化工学报, 2023, 74(4): 1528-1538. |
[8] | 周艾然, 陆平, 夏建辉, 李冬勤, 郭杰, 杜明, 董立春. 氯化钛白氧化反应器结疤问题分析及数值模拟[J]. 化工学报, 2023, 74(4): 1499-1508. |
[9] | 刘庆超, 贾辉, 许逸飞, 路娜, 尹延梅, 王捷. 基于FBG力学传感的曝气生物滤池中剪切力分布研究[J]. 化工学报, 2023, 74(4): 1755-1763. |
[10] | 时国华, 何林珅, 赵玺灵, 张世钢. 余热回收喷淋塔的烟气颗粒物脱除特性研究[J]. 化工学报, 2023, 74(4): 1735-1745. |
[11] | 王晓萱, 胡晓红, 陆雨楠, 王士勇, 凡凤仙. 旋转膜过滤器内部流动特性数值模拟[J]. 化工学报, 2023, 74(4): 1489-1498. |
[12] | 禹进, 余彬彬, 蒋新生. 一种基于虚拟组分的燃烧调控化学作用量化及分析方法研究[J]. 化工学报, 2023, 74(3): 1303-1312. |
[13] | 李新亚, 邢雷, 蒋明虎, 赵立新. 倒锥注气强化井下油水分离水力旋流器性能研究[J]. 化工学报, 2023, 74(3): 1134-1144. |
[14] | 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053. |
[15] | 贾龙菲, 付少童, 向星, 张华海, 张弢, 王利民. 颗粒振动影响动量传递过程的格子Boltzmann方法模拟[J]. 化工学报, 2023, 74(2): 735-747. |
|