[1] |
CATH T Y, CHILDRESS A E, ELIMELECH M. Forward osmosis:principles, applications, and recent developments[J]. J. Membr. Sci., 2006, 281(1/2):70-87.
|
[2] |
SHAFFER D L, WERBER J R, JARAMILLO H, et al. Forward osmosis:where are we now?[J]. Desalination, 2015, 356:271-284.
|
[3] |
王亚琴, 徐铜文, 王焕庭.正渗透原理及分离传质过程浅析[J]. 化工学报, 2013, 64(1):252-260. WANG Y Q, XU T W, WANG H T. Forward osmosis membrane process and its mass transport mechanism[J]. CIESC Journal, 2013, 64(1):252-260.
|
[4] |
陈璐斌, 谢朝新, 周宁玉, 等. 正渗透技术研究进展综述[J]. 净水技术, 2015, 34(5):26-32. CHEN L B, XIE C X, ZHOU N Y, et al. Overview of research progress in forward osmosis technology[J]. Water Purification Technology, 2015, 34(5):26-32.
|
[5] |
CHUNG T S, ZHANG S, WANG K Y, et al. Forward osmosis processes:yesterday, today and tomorrow[J]. Desalination, 2012, 287:78-81.
|
[6] |
AKTHER N, SODIQ A, GIWA A, et al. Recent advancements in forward osmosis desalination:a review[J]. Chem. Eng. J., 2015, 281:502-522.
|
[7] |
边丽霞, 方彦彦, 王晓琳. 正渗透过程中水与溶质的传递现象[J]. 化工学报, 2014, 65(7):2813-2820. BIAN L X, FANG Y Y, WANG X L. Water and solute transport phenomena in forward osmosis process[J]. CIESC Journal, 2014, 65(7):2813-2820.
|
[8] |
GRAY G T, MCCUTCHEON J R, ELIMELECH M. Internal concentration polarization in forward osmosis:role of membrane orientation[J]. Desalination, 2006, 197(1/2/3):1-8.
|
[9] |
MCCUTCHEON J R, ELIMELECH M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis[J]. J. Membr. Sci., 2006, 284:237-247.
|
[10] |
JUNG D H, LEE J, KIM D Y, et al. Simulation of forward osmosis membrane process:effect of membrane orientation and flow direction of feed and draw solutions[J]. Desalination, 2011, 277(1/2/3):83-91.
|
[11] |
GRUBER M F, JOHNSON C J, TANG C Y, et al. Computational fluid dynamics simulations of flow and concentration polarization in forward osmosis membrane systems[J]. J. Membr. Sci., 2011, 379(1/2):488-495.
|
[12] |
WONG M C Y, MARTINEZ K, RAMON G Z, et al. Impacts of operating conditions and solution chemistry on osmotic membrane structure and performance[J]. Desalination, 2012, 287:340-349.
|
[13] |
LAY W C L, HANG J S, TANG C Y, et al. Factors affecting flux performance of forward osmosis systems[J]. J. Membr. Sci., 2012, 394:151-168.
|
[14] |
HAWARI A H, KAMAL N, ALTAEE A. Combined influence of temperature and flow rate of feeds on the performance of forward osmosis[J]. Desalination, 2016, 398:98-105.
|
[15] |
OZAKI N, YAMAMOTO K. Hydraulic effects on sludge accumulation on membrane surface in cross flow filtration[J]. Water Res., 2001, 35(13):3137-3146.
|
[16] |
DU X, WANG Y, QU F S, et al. Impact of bubbly flow in feed channel of forward osmosis for wastewater treatment:flux performance and biofouling[J]. Chem. Eng. J., 2017, 316:1047-1058.
|
[17] |
PHUNTSHO S, SAHEBI S, MAJEED T, et al. Assessing the major factors affecting the performances of forward osmosis and its implications on the desalination process[J]. Chem. Eng. J., 2013, 231:484-496.
|
[18] |
DUCOM G, PUECH F P, CABASSUD C. Air sparring with flat sheet nanofiltration:a link between wall shear stresses and flux enhancement[J]. Desalination, 2002, 145(1/2/3):97-102.
|
[19] |
ABDULLAH S Z, WRAY H E, BERUBE P R, et al. Distribution of surface shear stress for a densely packed submerged hollow fiber membrane system[J]. Desalination, 2015, 357:117-120.
|
[20] |
CHAN C C V, BERUBE P R, HALL E R. Shear profiles inside gas sparged submerged hollow fiber membrane modules[J]. J. Membr. Sci., 2007, 297(1/2):104-120.
|
[21] |
YAMANOI I, KAGEYAMA K. Evaluation of bubble flow properties between flat sheet membranes in membrane bioreactor[J]. J. Membr. Sci., 2010, 360(1/2):102-108.
|
[22] |
LI T, NAGAOKA H, ITONAGA T, et al. Estimation of shear stress working on submerged vertically set hollow fibre membrane in MBRs[J]. Journal of Water Supply Research and Technology, 2010, 59(2/3):191-197.
|
[23] |
LIU X, WANG Y, WAITE T D, et al. Numerical simulation of bubble induced shear in membrane bioreactors:effects of mixed liquor rheology and membrane configuration[J]. Water Res., 2015, 75:131-145.
|
[24] |
LI T, LAW A W K, CETIN M, et al. Fouling control of submerged hollow fibre membranes by vibrations[J]. J. Membr. Sci., 2013, 427:230-239.
|
[25] |
WEI P, ZHANG K S, GAO W M, et al. CFD modeling of hydrodynamic characteristics of slug bubble flow in a flat sheet membrane bioreactor[J]. J. Membr. Sci., 2013, 445:15-24.
|
[26] |
LEE Y K, WON Y J, YOO J H, et al. Flow analysis and fouling on the patterned membrane surface[J]. J. Membr. Sci., 2013, 427:320-325.
|
[27] |
KIM K, JUNG J Y, KWON J H, et al. Dynamic microfiltration with a perforated disk for effective harvesting of microalgae[J]. J. Membr. Sci., 2015, 475:252-258.
|
[28] |
LIU J G, SCHMIDT-HATTENGERGER C, BORM G. Dynamic strain measurement with a fibre Bragg grating sensor system[J]. Measurement, 2002, 32(2):151-161.
|
[29] |
RAO Y J. In-fibre Bragg grating sensors[J]. Meas. Sci. Technol., 1997, 8:355-375.
|
[30] |
SHU R J, CHEN J, CHEN Z M. Dynamic strain fiber Bragg grating sensor system based on temperature controlled fiber Bragg grating filter[J]. Chin. J. Sens., 2007, 20(3):554-558.
|
[31] |
LING H Y, LAU K T, JIN W, et al. Characterization of dynamic strain measurement using reflection spectrum from a fiber Bragg grating[J]. Opt. Commun., 2007, 270(1):25-30.
|
[32] |
DAI Y B, LI P, LIU Y J, et al. Integrated real-time monitoring system for strain/temperature distribution based on simultaneous wavelength and time division multiplexing technique[J]. Opt. Lasers Eng., 2014, 59:19-24.
|
[33] |
JIN W, ZHOU Y, CHAN P K C, et al. A fibre-optic grating sensor for the study of flow-induced vibrations[J]. Sens. Actuators, 2000, 79(1):36-45.
|
[34] |
TJIN S C, SURESH R, NGO N Q. Fiber Bragg grating based shear-force sensor:modeling and testing[J]. J. Lightwave Technol., 2004, 22(7):1728-1733.
|