化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1894-1903.DOI: 10.11949/j.issn.0438-1157.20181386
收稿日期:
2018-11-20
修回日期:
2018-12-18
出版日期:
2019-05-05
发布日期:
2019-05-05
通讯作者:
庞煜霞
作者简介:
<named-content content-type="corresp-name">赵汝斌</named-content>(1994—),男,硕士研究生,<email>445497124@qq.com</email>|庞煜霞(1975—),女,博士,副研究员,<email>ceyxpang@scut.edu.cn</email>
基金资助:
Rubin ZHAO(),Meng CAI,Yuxia PANG()
Received:
2018-11-20
Revised:
2018-12-18
Online:
2019-05-05
Published:
2019-05-05
Contact:
Yuxia PANG
摘要:
采用XPS、静态接触角、颗粒表面电荷、扫描电镜、官能团分析等方法来研究碱木质素经过碱溶透析和碱溶酸析处理后的物化性质的差异,探讨碱木质素分子聚集程度对Pb2+去除性能的影响。结果表明,碱溶透析木质素的比表面积是碱溶酸析木质素的4.77倍,碱溶透析样品较酸析样品的表面氧含量高48%、水/木质素薄膜的静态接触角低13°,反映出碱溶透析处理后的木质素比碱溶酸析处理后的木质素分子聚集程度低、分子链疏松、羧基和羟基等含氧官能团裸露程度增加。碱溶透析处理后的木质素与Pb2+的静电作用增强,对Pb2+的去除能力显著提高。Pb2+浓度为100 mg·L-1时,碱溶透析木质素对Pb2+的去除量达136 mg·g-1,去除率为81.8%,且去除性能受体系pH的影响小。与化学改性和表面功能化相比,利用碱溶透析处理以提高木质素对Pb2+的去除性能具有操作简单、无毒、能耗低的优点。
中图分类号:
赵汝斌, 蔡猛, 庞煜霞. 碱溶透析和酸析处理对碱木质素物化性质和Pb2+去除性能的影响[J]. 化工学报, 2019, 70(5): 1894-1903.
Rubin ZHAO, Meng CAI, Yuxia PANG. Effects of dialysis and acid precipitation treatment on physicochemical properties of alkali lignin and its lead ions removal properties[J]. CIESC Journal, 2019, 70(5): 1894-1903.
Sample | C/% | H/% | N/% | S/% | Lignin/% | Cellulose/% | Ash/% | Phenolic hydroxyl content/(mmol·g-1) | Carboxyl group content/(mmol·g-1) | M w/(g·mol-1) |
---|---|---|---|---|---|---|---|---|---|---|
AL | 60.03 | 5.65 | 1.31 | 0.55 | 63.64 | <1 | 2.42 | 1.76 | 1.63 | 3800 |
SX-AL | 58.65 | 5.08 | 0.06 | 0.66 | 64.91 | <1 | 0.90 | 2.14 | 1.94 | 4300 |
TX-AL | 58.00 | 5.13 | 0.08 | 0.42 | 74.30 | <1 | 0.34 | 2.27 | 2.21 | 4500 |
表1 碱溶透析和碱溶酸析处理对木质素元素、组分的影响
Table 1 Effect of alkali-dialysis and alkali-acid precipitation on element and components of lignin
Sample | C/% | H/% | N/% | S/% | Lignin/% | Cellulose/% | Ash/% | Phenolic hydroxyl content/(mmol·g-1) | Carboxyl group content/(mmol·g-1) | M w/(g·mol-1) |
---|---|---|---|---|---|---|---|---|---|---|
AL | 60.03 | 5.65 | 1.31 | 0.55 | 63.64 | <1 | 2.42 | 1.76 | 1.63 | 3800 |
SX-AL | 58.65 | 5.08 | 0.06 | 0.66 | 64.91 | <1 | 0.90 | 2.14 | 1.94 | 4300 |
TX-AL | 58.00 | 5.13 | 0.08 | 0.42 | 74.30 | <1 | 0.34 | 2.27 | 2.21 | 4500 |
图1 碱溶酸析和碱溶透析处理对木质素样品比表面积、表面氧含量和亲疏水性的影响(插图为水在木质素薄膜上的静态接触角测试结果)
Fig.1 Effect of alkali-dialysis and alkali-acid precipitation on surface area, oxygen content and hydrophilicity of lignin(Insets show contact angle of water on SX-AL and TX-AL film)
Sample | Sample mass/mg | Lignin mass/mg | Removal rate/% | Removal capacity /(mg·g-1) |
---|---|---|---|---|
SX-AL | 30 | 19.5 | 23.6 | 39.3 |
SX-AL | 40 | 26.0 | 31.4 | 39.2 |
SX-AL | 50 | 32.4 | 38.9 | 38.8 |
TX-AL | 30 | 22.3 | 81.8 | 136.0 |
表2 碱溶酸析木质素样品用量对Pb2+去除量和去除率的影响
Table 2 Effects of SX-AL mass on removal capacity and removal rate
Sample | Sample mass/mg | Lignin mass/mg | Removal rate/% | Removal capacity /(mg·g-1) |
---|---|---|---|---|
SX-AL | 30 | 19.5 | 23.6 | 39.3 |
SX-AL | 40 | 26.0 | 31.4 | 39.2 |
SX-AL | 50 | 32.4 | 38.9 | 38.8 |
TX-AL | 30 | 22.3 | 81.8 | 136.0 |
Adsorbent | Adsorption capacity/(mg·g-1) | Surface charge of lignin(pH=5.5)/(mmol·g-1) | Ref. |
---|---|---|---|
TX-AL | 136.0 | 0.79 | present study |
SAL | 165.4 | 1.00 | present study |
CMAL | 159.9 | 0.95 | present study |
aminated lignin | 60.5 | — | [10] |
modified lignin by amination and sulfomethylation | 53.9 | — | [11] |
modified lignin by amination, sulfomethylation and phenolation | 130.2 | — | [12] |
microwave-assisted carboxymethyl lignin | 323.6 | — | [14] |
polycondensation resins by lignin reaction with glucose | 194.6 | — | [15] |
lignin microspheres | 33.9 | — | [19] |
porous lignin-based sphere | 27.1 | — | [20] |
porous lignin based poly (acrylic acid)/organo-montmorillonite nanocomposites | 223.8 | — | [21] |
lignin grafted carbon nanotubes | 235.0 | — | [22] |
chitin/lignin hybrid material | 91.7 | — | [31] |
表3 木质素基吸附剂对Pb2+的去除能力对比
Table 3 Removal capacities toward Pb(II) by some lignin-based adsorbent
Adsorbent | Adsorption capacity/(mg·g-1) | Surface charge of lignin(pH=5.5)/(mmol·g-1) | Ref. |
---|---|---|---|
TX-AL | 136.0 | 0.79 | present study |
SAL | 165.4 | 1.00 | present study |
CMAL | 159.9 | 0.95 | present study |
aminated lignin | 60.5 | — | [10] |
modified lignin by amination and sulfomethylation | 53.9 | — | [11] |
modified lignin by amination, sulfomethylation and phenolation | 130.2 | — | [12] |
microwave-assisted carboxymethyl lignin | 323.6 | — | [14] |
polycondensation resins by lignin reaction with glucose | 194.6 | — | [15] |
lignin microspheres | 33.9 | — | [19] |
porous lignin-based sphere | 27.1 | — | [20] |
porous lignin based poly (acrylic acid)/organo-montmorillonite nanocomposites | 223.8 | — | [21] |
lignin grafted carbon nanotubes | 235.0 | — | [22] |
chitin/lignin hybrid material | 91.7 | — | [31] |
1 | Reddad Z , Gerente C , Andres Y , et al . Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies[J]. Environmental Science & Technology, 2002, 36(9): 2067-2073. |
2 | Babel S , Kurniawan T A . Low-cost adsorbents for heavy metals uptake from contaminated water: a review[J]. Journal of Hazardous Materials, 2003, 97(1/2/3): 219-243. |
3 | Mccarthy J L , Islam A . Lignin chemistry, technology and utilization: a brief history in lignin: historical, biological and materials perspeetives[C]// ACS Symposium Series 742. Washington, DC, 2000: 2-99. |
4 | Sarkanen K V , Ludwig C H . Lignins: Occurrence, Formation, Structure and Reactions[M]. New York: Wiley-Interscience, 1971. |
5 | Guo X , Zhang S , Shan X Q . Adsorption of metal ions on lignin[J]. Journal of Hazardous Materials, 2008, 151(1): 134-142. |
6 | Albadarin A B , Ala’a H , Al-Laqtah N A , et al . Biosorption of toxic chromium from aqueous phase by lignin: mechanism, effect of other metal ions and salts[J]. Chemical Engineering Journal, 2011, 169(1/2/3): 20-30. |
7 | Deng Y , Feng X , Yang D , et al . π-π Stacking of the aromatic groups in lignosulfonates[J]. Bioresources, 2012, 7(1): 1109-1117. |
8 | Lindström T . The colloidal behaviour of kraft lignin[J]. Colloid and Polymer Science, 1980, 258(2): 168-173. |
9 | 曹胜磊, 耿增超, 王月玲, 等 . 化学改性提高木质素水溶性及其对Zn2+的络合能力[J]. 农业环境科学学报, 2016, 35(11): 2216-2223. |
Cao S L , Geng Z C , Wang Y L , et al . Modification of lignin for improvement it's water-soluble property and ability to complex Zn2+ [J]. Journal of Agro-Environment Science, 2016, 35(11): 2216-2223. | |
10 | Ge Y , Song Q , Li Z . A mannich base biosorbent derived from alkaline lignin for lead removal from aqueous solution[J]. Journal of Industrial and Engineering Chemistry, 2015, 23: 228-234. |
11 | Ge Y , Li Z , Kong Y , et al . Heavy metal ions retention by bi-functionalized lignin: synthesis, applications, and adsorption mechanisms[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(6): 4429-4436. |
12 | Wang B , Wen J L , Sun S L , et al . Chemosynthesis and structural characterization of a novel lignin-based bio-sorbent and its strong adsorption for Pb (II)[J]. Industrial Crops and Products, 2017, 108: 72-80. |
13 | 庞煜霞, 蔡猛, 楼宏铭 . 磷酸化木质素的合成及对铅离子的去除性能[J]. 华南理工大学学报 (自然科学版), 2017, 45(6): 96-102. |
Pang Y X , Cai M , Lou H M . Preparation and Pb2+ removal capacity of phosphorylated lignin[J]. Journal of South China University of Technology(Natural Science Edition), 2017, 45(6): 96-102. | |
14 | Li Y , Zhao R , Pang Y , et al . Microwave-assisted synthesis of high carboxyl content of lignin for enhancing adsorption of lead[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553: 187-194. |
15 | Liang F B , Song Y L , Huang C P , et al . Synthesis of novel lignin-based ion-exchange resin and its utilization in heavy metals removal[J]. Industrial & Engineering Chemistry Research, 2013, 52(3): 1267-1274. |
16 | 李爱阳, 唐有根 . 接枝共聚木质素絮凝处理电镀废水中的重金属离子[J].环境工程学报, 2008, 2(5): 611-614. |
Li A Y , Tang Y G . Treatment of heavy metal ions in electroplating wastewater by flocculation with graft copolymerization lignosulfonate[J]. Chinese Journal of Environmental Engineering, 2008, 2(5): 611-614. | |
17 | Gao Y , Yue Q , Gao B , et al . Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni(II) adsorption[J]. Chemical Engineering Journal, 2013, 217: 345-353. |
18 | Maldhure A V , Ekhe J D . Preparation and characterizations of microwave assisted activated carbons from industrial waste lignin for Cu(II) sorption[J]. Chemical Engineering Journal, 2011, 168(3): 1103-1111. |
19 | Ge Y , Qin L , Li Z . Lignin microspheres: an effective and recyclable natural polymer-based adsorbent for lead ion removal[J]. Materials & Design, 2016, 95: 141-147. |
20 | Li Z , Ge Y , Wan L . Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media[J]. Journal of Hazardous Materials, 2015, 285: 77-83. |
21 | Ma Y , Lyu L , Guo Y , et al . Porous lignin based poly(acrylic acid)/organo-montmorillonite nanocomposites: swelling behaviors and rapid removal of Pb(II) ions[J]. Polymer, 2017, 128: 12-23. |
22 | Li Z , Chen J , Ge Y . Removal of lead ion and oil droplet from aqueous solution by lignin-grafted carbon nanotubes[J]. Chemical Engineering Journal, 2017, 308: 809-817. |
23 | 贺政 . 不同来源工业木质素的化学改性及对农药WP和WG的分散作用研究[D]. 广州: 华南理工大学, 2015. |
He Z . Chemical modification of technical lignin from different sources and the dispersion performance in pesticide WP and WG formulation [D]. Guangzhou: South China University of Technology, 2015. | |
24 | 温伟能 . 木浆黑液的羧甲基化改性及在三种农药制剂中的应用研究[D]. 广州: 华南理工大学, 2013. |
Wen W N . Study on the application of black liquor modified by carboxymethylation in three pesticide formulations[D]. Guangzhou: South China University of Technology, 2013. | |
25 | Scarlata C , Sluiter J , Templeton D , et al . Determination of structural carbohydrates and lignin in biomass: National Renewable Energy Laboratory-NREL/TP-510-42618. Laboratory Analytical Procedure (LAP) [R]. Golden, Co, 2011. |
26 | Li H , Chai X S , Liu M , et al . Novel method for the determination of the methoxyl content in lignin by headspace gas chromatography[J]. Journal of Agricultural and Food Chemistry, 2012, 60(21): 5307-5310. |
27 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会 . 造纸原料、纸浆、纸和纸板 灰分的测定: GB/T 742—2008[S]. 北京: 中国标准出版社, 2008. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China . Fibrous raw material, pulp, paper and board—Determination of ash: GB/T 742—2008[S]. Beijing: Standards Press of China, 2008. | |
28 | Butler J P , Czepiel T P . Determination of phenolic groups in lignin preparations titration with potassium methoxide using dimethylformamide as a solvent[J]. Analytical Chemistry, 1956, 28(9): 1468-1472. |
29 | Zhou M , Wang W , Yang D , et al . Preparation of a new lignin-based anionic/cationic surfactant and its solution behaviour[J]. RSC Advances, 2015, 5(4): 2441-2448. |
30 | Adebayo M A , Prola L D T , Lima E C , et al . Adsorption of procion blue MX-R dye from aqueous solutions by lignin chemically modified with aluminium and manganese[J]. Journal of Hazardous Materials, 2014, 268(3): 43-50. |
31 | Bartczak P , Ł Klapiszewski , Wysokowski M , et al . Treatment of model solutions and wastewater containing selected hazardous metal ions using a chitin/lignin hybrid material as an effective sorbent[J]. Journal of Environmental Management, 2017, 204: 300-310. |
[1] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[2] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[3] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[4] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[5] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[6] | 闫新龙, 黄志刚, 胡清勋, 张新, 胡晓燕. Cu/Co掺杂多孔炭活化过硫酸盐降解水中硝基酚研究[J]. 化工学报, 2023, 74(3): 1102-1112. |
[7] | 李承威, 骆华勇, 张铭轩, 廖鹏, 方茜, 荣宏伟, 王竞茵. 氢氧化镧交联壳聚糖微球的微流控制备及其除磷性能[J]. 化工学报, 2022, 73(9): 3929-3939. |
[8] | 王江丽, 薛敏, 赵承科, 岳凤霞. 木质素分级对其应用性能的影响[J]. 化工学报, 2022, 73(5): 1894-1907. |
[9] | 赵希强, 张健, 孙爽, 王文龙, 毛岩鹏, 孙静, 刘景龙, 宋占龙. 生物质炭改性微球去除化工废水中无机磷的性能研究[J]. 化工学报, 2022, 73(5): 2158-2173. |
[10] | 贾艳萍, 丁雪, 刚健, 佟泽为, 张海丰, 张兰河. Mn强化Fe/C微电解工艺条件优化及降解油墨废水机理[J]. 化工学报, 2022, 73(5): 2183-2193. |
[11] | 王祺, 房阔, 贺聪慧, 王凯军. 流动电极电容去离子技术综述:研究进展与未来挑战[J]. 化工学报, 2022, 73(3): 975-989. |
[12] | 毛恒, 王月, 王森, 刘伟民, 吕静, 陈甫雪, 赵之平. APTES改性ZIF-L/PEBA混合基质膜强化渗透汽化分离苯酚研究[J]. 化工学报, 2022, 73(3): 1389-1402. |
[13] | 郑喜, 王涛, 任永胜, 赵珍珍, 王雪琪, 赵之平. 聚间苯二甲酰间苯二胺平板膜的制备及其性能研究[J]. 化工学报, 2022, 73(10): 4707-4721. |
[14] | 张兰河, 汪露, 李梓萌, 唐宏, 郭静波, 贾艳萍, 张明爽. 电极超滤膜生物反应器处理阴离子表面活性剂废水[J]. 化工学报, 2022, 73(10): 4679-4691. |
[15] | 付鹏波,田金乙,吕文杰,黄渊,刘毅,卢浩,杨强,修光利,汪华林. 物理法水处理技术[J]. 化工学报, 2022, 73(1): 59-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||