化工学报 ›› 2019, Vol. 70 ›› Issue (2): 440-449.DOI: 10.11949/j.issn.0438-1157.20181356
收稿日期:
2018-11-16
修回日期:
2018-11-28
出版日期:
2019-02-05
发布日期:
2019-02-05
通讯作者:
黄克谨
作者简介:
<named-content content-type="corresp-name">陈海胜</named-content>(1986—),男,博士,副教授,<email>chenhs@mail.buct.edu.cn</email>|黄克谨(1963—),男,博士,教授,<email>huangkj@mail.buct.edu.cn</email>
基金资助:
Haisheng CHEN(),Tengfei WANG,Kejin HUANG(),Yang YUAN,Xing QIAN,Liang ZHANG
Received:
2018-11-16
Revised:
2018-11-28
Online:
2019-02-05
Published:
2019-02-05
Contact:
Kejin HUANG
摘要:
对于具有最不利相对挥发度排序(即反应物为最轻和最重组分,生成物为中间组分)的四元反应分离物系而言,在反应精馏塔的顶部和底部之间引入外部环流能够提高系统的反应分离效率,从而大幅度地降低系统的能量消耗和固定投资成本。以理想四元可逆放热反应的分离为例,研究了外部环流反应精馏塔的分散控制方案的设计问题。结果表明外部环流的引入提高了系统的反应速率,使得外部环流反应精馏塔的闭环控制效果更好(与传统反应精馏塔相比),对干扰的处理能力更强。另外,由于外部环流反应精馏塔比常规反应精馏塔有更多的操作变量(即外部环流流量),利用该变量对出料浓度进行控制,可以进一步提高系统的闭环控制效果。
中图分类号:
陈海胜, 王腾飞, 黄克谨, 苑杨, 钱行, 张亮. 外部环流反应精馏塔的分散控制方案设计[J]. 化工学报, 2019, 70(2): 440-449.
Haisheng CHEN, Tengfei WANG, Kejin HUANG, Yang YUAN, Xing QIAN, Liang ZHANG. Decentralized control system designs for reactive distillation columns with external recycle[J]. CIESC Journal, 2019, 70(2): 440-449.
参 数 | 数 值 |
---|---|
塔压/kPa | 1200 |
塔板数 | |
精馏段 | 19 |
反应段 | 11 |
提馏段 | 0 |
滞液量/kmol | |
冷凝器/再沸器 | 80 |
塔板 | 4 |
进料流量/(kmol/s) | |
A | 0.0126 |
B | 0.0126 |
进料塔板 | |
A | 32 |
B | 21 |
产物浓度/% (mol) | |
C | 47.5 |
D | 47.5 |
活化能/(kJ/kmol) | |
正向 | 50208 |
反向 | 71128 |
366 K时的反应速率/(kmol/(s·kmol)) | |
正向 | 0.008 |
反向 | 0.004 |
相对挥发度 A∶B∶C∶D | 8∶1∶4∶2 |
反应热/(kJ/kmol) | -20920 |
汽化潜热/(kJ/kmol) | 29053.7 |
饱和蒸气压常数 | |
A (Avp/Bvp) | 17.65/3862 |
B (Avp/Bvp) | 15.57/3862 |
C (Avp/Bvp) | 16.95/3862 |
D (Avp/Bvp) | 16.26/3862 |
表1 物性参数和理想四元放热反应体系的结构设计参数
Table 1 Physical properties and structure design specifications of hypothetic ideal quaternary exothermic reaction system
参 数 | 数 值 |
---|---|
塔压/kPa | 1200 |
塔板数 | |
精馏段 | 19 |
反应段 | 11 |
提馏段 | 0 |
滞液量/kmol | |
冷凝器/再沸器 | 80 |
塔板 | 4 |
进料流量/(kmol/s) | |
A | 0.0126 |
B | 0.0126 |
进料塔板 | |
A | 32 |
B | 21 |
产物浓度/% (mol) | |
C | 47.5 |
D | 47.5 |
活化能/(kJ/kmol) | |
正向 | 50208 |
反向 | 71128 |
366 K时的反应速率/(kmol/(s·kmol)) | |
正向 | 0.008 |
反向 | 0.004 |
相对挥发度 A∶B∶C∶D | 8∶1∶4∶2 |
反应热/(kJ/kmol) | -20920 |
汽化潜热/(kJ/kmol) | 29053.7 |
饱和蒸气压常数 | |
A (Avp/Bvp) | 17.65/3862 |
B (Avp/Bvp) | 15.57/3862 |
C (Avp/Bvp) | 16.95/3862 |
D (Avp/Bvp) | 16.26/3862 |
参数 | CS0_CRDC | CS1_RDC_TBER | CS2_RDC_TBER | |||
---|---|---|---|---|---|---|
KC | TI/s | KC | TI/s | KC | TI/s | |
塔顶液位 | 1 | — | 0.5 | — | 0.5 | — |
B进料流量 | 0.05 | — | 0.001 | — | 0.0005 | 240000 |
出料中C的浓度 | 1.36 | 3000 | 1.36 | 3000 | 0.68 | 6000 |
塔底液位 | 0.5 | — | 40 | — | 40 | — |
出料中D的浓度 | — | — | — | — | 0.4 | 4500 |
表2 CRDC和RDC_TBER三种控制方案的控制器参数
Table 2 Controller parameters for three control systems of CRDC and RDC_TBER
参数 | CS0_CRDC | CS1_RDC_TBER | CS2_RDC_TBER | |||
---|---|---|---|---|---|---|
KC | TI/s | KC | TI/s | KC | TI/s | |
塔顶液位 | 1 | — | 0.5 | — | 0.5 | — |
B进料流量 | 0.05 | — | 0.001 | — | 0.0005 | 240000 |
出料中C的浓度 | 1.36 | 3000 | 1.36 | 3000 | 0.68 | 6000 |
塔底液位 | 0.5 | — | 40 | — | 40 | — |
出料中D的浓度 | — | — | — | — | 0.4 | 4500 |
ΔHR | ——反应热,kJ/kmol |
---|---|
ΔHV | ——汽化潜热,kJ/kmol |
L | ——液相流量,kmol/s |
M | ——塔板滞液量, kmol |
rate | ——反应速率,kmol/s |
V | ——气相流量,kmol/s |
下角标 | |
i | ——组分 |
j | ——塔板 |
符号说明
ΔHR | ——反应热,kJ/kmol |
---|---|
ΔHV | ——汽化潜热,kJ/kmol |
L | ——液相流量,kmol/s |
M | ——塔板滞液量, kmol |
rate | ——反应速率,kmol/s |
V | ——气相流量,kmol/s |
下角标 | |
i | ——组分 |
j | ——塔板 |
1 | 高鑫, 赵悦, 李洪, 等. 反应精馏过程耦合强化技术基础与应用研究述评[J]. 化工学报, 2018, 69(1): 218-238. |
GaoX, ZhaoY, LiH, et al. Review of basic and application investigation of reactive distillation technology for process intensification[J]. CIESC Journal, 2018, 69(1): 218-238. | |
2 | Segovia-hernandezJ G, HernandezS, PetricioletA B. Reactive distillation: a review of optimal design using deterministic and stochastic techniques[J]. Chem. Eng. Processing, 2015, 97: 134-143. |
3 | KissA A. Distillation technology-still young and full of breakthrough opportunities[J]. J. Chem. Tech. Bio., 2014, 89(4): 479-498. |
4 | KumarM V P, KaisthaN. Decentralized control of a kinetically controlled ideal reactive distillation column[J]. Chem. Eng. Sci., 2008, 63(1): 228-243. |
5 | HungS B, LeeM J, TangY T, et al. Control of different reactive distillation configurations[J]. AIChE Journal, 2006, 52(4): 1423-1440. |
6 | KaymakD B, UnluH, OfkeliT. Control of a reactive distillation column with double reactive sections for two-stage consecutive reactions[J]. Chem. Eng. Processing, 2016, 113: 86-93. |
7 | CaoY, HuangK J, YuanY, et al. Dynamics and control of reactive distillation columns with double reactive sections: feed-splitting influences[J]. Ind. Eng. Chem. Res., 2017, 56(28): 8029-8040. |
8 | ChenH S, HuangK J, LiuW, et al. Enhancing mass and energy integration by external recycle in reactive distillation columns[J]. AIChE Journal, 2013, 59(6): 2015-2032. |
9 | ChenH S, HuangK J, ZhangL, et al. Reactive distillation columns with a top-bottom external recycle[J]. Ind. Eng. Chem. Res., 2012, 51(44): 14473-14488. |
10 | ZhangL, ChenH S, YuanY, et al. Adopting feed splitting in design of reactive distillation columns with two reactive sections[J]. Chem. Eng. Processing., 2015, 89: 9-18. |
11 | ChenH S, ZhangL, HuangK J, et al. Reactive distillation columns with two reactive sections: feed splitting plus external recycle[J]. Chem. Eng. Processing, 2016, 108: 189-196. |
12 | YaoX H, HuangK J, ChenH S, et al. Employing top-bottom recycled reactive distillation to the separations of adipic acid and glutaric acid esterifications[J]. Ind. Eng. Chem. Res., 2013, 52(47): 16870-16879. |
13 | 陈海胜, 黄克谨, 王韶锋. 一种新型的双环流反应蒸馏塔[J]. 中国科技论文, 2013, 8(12): 1277-1281. |
ChenH S, HuangK J, WangS F. A novel reactive distillation column with two external recycles[J]. China Science Paper, 2013, 8(12): 1277-1281. | |
14 | YuN, LiL M, ChenM Q, et al. Novel reactive distillation process with two side streams for dimethyl adipate production[J]. Chem. Eng. Processing, 2017, 118: 9-18. |
15 | TungS T, YuC C. Effects of relative volatility ranking to the design of reactive distillation[J]. AIChE Journal, 2007, 53(5): 1278-1297. |
16 | NiuM W, RangaiahG P. Process retrofitting via intensification: a heuristic methodology and its application to isopropyl alcohol process[J]. Ind. Eng. Chem. Res., 2016, 55(12): 3614-3629. |
17 | LongN V D, LeeM Y. Review of retrofitting distillation columns using thermally coupled distillation sequences and dividing wall columns to improve energy efficiency[J]. J. Chem. Eng. Jap., 2014, 47(2): 87-108. |
18 | LuybenW L, YuC C. Reactive Distillation Design and Control[M]. New York: John Wiley & Sons Inc., 2008: 15-36. |
19 | KaymakD B, LuybenW L. Evaluation of a two-temperature control structure for a two-reactant/two-product type of reactive distillation column[J]. Chem. Eng. Sci., 2006, 61(13): 4432-4450. |
20 | KumarM V P, KaisthaN. Decentralized control of a kinetically controlled ideal reactive distillation column[J]. Chem. Eng. Sci., 2008, 63(1): 228-243. |
21 | KaymakD B, YilmazD, GurerA Z. Effect of relative volatilities on inferential temperature control of reactive distillation columns[J]. Ind. Eng. Chem. Res., 2011, 50(13): 8138-8152. |
22 | MathewA K, KaisthaN, KumarM V P. Control of quaternary ideal endothermic reactive distillation with and without internal heat integration[J]. Chem. Eng. Tech., 2016, 39(4): 775-785. |
23 | Al-ArfajM, LuybenW L. Comparison of alternative control structures for an ideal two-product reactive distillation column[J]. Ind. Eng. Chem. Res., 2000, 39(47): 3298-3307. |
24 | KumarM V P, KaisthaN. Reactive distillation column design for controllability: a case study[J]. Chem. Eng. Processing, 2009, 48(2): 606-616. |
25 | SharmaN, SinghK. Control of reactive distillation column: a review[J]. Int. J. Chem. React., 2010, 8(R5): 1-55. |
26 | 陈镭, 孙炜. 反应精馏法生产醋酸丁酯动态模拟[J]. 广东化工, 2015, 42(1): 5-8. |
ChenL, SunW. Dynamic simulation of reactive distillation synthesis of butyl acetate[J]. Guangdong Chem. Ind., 2015, 42(1): 5-8. | |
27 | 李洪, 孟莹, 李鑫钢, 等. 乙酸戊酯酯化反应精馏过程系统控制模拟及分析[J]. 化工进展, 2015, 34(12): 4165-4171. |
LiH, MengY, LiX G, et al. Dynamic simulation and analysis of reactive distillation column for production of amyl acetate[J]. Chem. Ind. Eng. Progress, 2015, 34(12): 4165-4171. | |
28 | Al-ArfajM, LuybenW L. Comparative control study of ideal and methyl acetate reactive distillation[J]. Chem. Eng. Sci., 2002, 57(24): 5039-5050. |
29 | MansouriS S, HuusomJ K, GaniR, et al. Systematic integrated process design and control of binary element reactive distillation processes[J]. AIChE Journal, 2016, 62(9): 3137-3154. |
30 | LuybenW L. Distillation Design and Control Using AspenTM Simulation[M]. New York: John Wiley & Sons Inc., 2013: 166-172. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[3] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[4] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[5] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[6] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[7] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[8] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[9] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[10] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[11] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[12] | 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186. |
[13] | 张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204. |
[14] | 张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227. |
[15] | 王雅琳, 潘雨晴, 刘晨亮. 基于GSA-LSTM动态结构特征提取的间歇过程监测方法[J]. 化工学报, 2022, 73(9): 3994-4002. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||