1 |
Lowe E A , Moran S R , Holmes D B . Eco-Industrial Parks: A Handbook for Local Development Teams[M]. Oakland, CA: Indigo Development, 1992: 13-14.
|
2 |
Linnhoff B . Pinch analysis—a state-of-the-art overview[J]. Chemical Engineering Research & Design, 1993, 71: 503-522.
|
3 |
Shenoy U V . Heat Exchanger Network Synthesis Process Optimization by Energy and Resource Analysis[M]. Houston, TX: Gulf Professional Publishing, 1995: 367-398.
|
4 |
Smith R . Chemical Process Design and Integration[M]. UK:John Wiley&Sons, 2005.
|
5 |
El-Halwagi M M . Process Integration: Volume 7 (Process Systems Engineering) [M]. USA: Academic Press, 2006.
|
6 |
Garbs M . Pinch analysis and process integration: a user guide on process integration for the efficient use of energy[J]. Journal of Cleaner Production, 2016, 110: 203.
|
7 |
Morton R J , Linnhoff B . Individual process improvements in the context of site wide interactions[C]//IChemE 11th Annual Research Meeting. UK: Bath, 1984.
|
8 |
Ahmad S , Hui D C W . Heat recovery between areas of integrity[J]. Computers & Chemical Engineering, 1991, 15(12): 809-832.
|
9 |
Hu C W , Ahmad S . Total site heat integration using the utility system[J]. Computers & Chemical Engineering, 1994, 18(8): 729-742.
|
10 |
Goršek A , Glavič P , Bogataj M . Design of the optimal total site heat recovery system using SSSP approach[J]. Chemical Engineering & Processing Process Intensification, 2006, 45(5): 372-382.
|
11 |
Rodera H , Bagajewicz M J . Targeting procedures for energy savings by heat integration across plants[J]. AIChE Journal, 1999, 45(8): 1721-1742.
|
12 |
Bagajewicz M , Rodera H . Energy savings in the total site heat integration across many plants[J]. Computers & Chemical Engineering, 2000, 24(2): 1237-1242.
|
13 |
And H R , Bagajewicz M J . Multipurpose heat-exchanger networks for heat integration across plants[J]. Industrial & Engineering Chemistry Research, 2001, 40(23): 5585-5603.
|
14 |
Bagajewicz M , Rodera H . Multiple plant heat integration in a total site[J]. AIChE Journal, 2002, 48(10): 2255-2270.
|
15 |
Bandyopadhyay S , Varghese J , Bansal V . Targeting for cogeneration potential through total site integration[J]. Applied Thermal Engineering, 2010, 30(1): 6-14.
|
16 |
Suaysompol K , Wood R M . Estimation of the installed cost of heat exchanger networks[J]. International Journal of Production Economics, 1993, 29(3): 303-312.
|
17 |
Jiang D , Chang C T . A new approach to generate flexible multiperiod heat exchanger network designs with timesharing mechanisms[J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3794-3804.
|
18 |
Geng Y , Zhang P , Ulgiati S , et al . Energy analysis of an industrial park: the case of Dalian, China[J]. Science of the Total Environment, 2010, 408(22): 5273-5283.
|
19 |
Linnhoff B , Eastwood A R . Overall site optimisation by pinch technology[J]. Chemical Engineering Research & Design, 1997, 75(75): S138-S144.
|
20 |
Klemeš J , Dhole V R , Raissi K , et al . Targeting and design methodology for reduction of fuel, power and CO2 on total sites[J]. Applied Thermal Engineering, 1997, 17(8/9/10): 993-1003.
|
21 |
Khoshgoftar Manesha M H , Amidpoura M , Khamis Abadi S , et al . A new cogeneration targeting procedure for total site utility system[J]. Applied Thermal Engineering, 2013, 54(1): 272-280.
|
22 |
Chew K H , Klemeš J J , Alwi S R W , et al . Process modifications to maximise energy savings in total site heat integration[J]. Applied Thermal Engineering, 2015, 78: 731-739.
|
23 |
Chew K H , Klemeš J J , Alwi S R W , et al . Process modification of total site heat integration profile for capital cost reduction[J]. Applied Thermal Engineering, 2015, 89: 1023-1032.
|
24 |
Tarighaleslami A H , Walmsley T G , Atkins M J , et al . Heat transfer enhancement for site level indirect heat recovery systems using nanofluids as the intermediate fluid[J]. Applied Thermal Engineering, 2016, 105: 923-930.
|
25 |
Kapil A , Bulatov I , Smith R , et al . Process integration of low grade heat in process industry with district heating networks[J]. Energy, 2012, 44(1): 11-19.
|
26 |
Boldyryev S , Varbanov P S , Lund H , et al . Low potential heat utilization of bromine plant via integration on process and total site levels[J]. Energy, 2015, 90: 47-55.
|
27 |
Hackl R , Andersson E , Harvey S . Targeting for energy efficiency and improved energy collaboration between different companies using total site analysis (TSA)[J]. Energy, 2011, 36(8): 4609-4615.
|
28 |
Wang Y , Chang C , Feng X . A systematic framework for multi-plants heat integration combining direct and indirect heat integration methods[J]. Energy, 2015, 90: 56-67.
|
29 |
Bade M H , Bandyopadhyay S . Minimization of thermal oil flow rate for indirect integration of multiple plants[J]. Industrial & Engineering Chemistry Research, 2014, 53 (33): 13146-13156.
|
30 |
Chang C , Chen X , Wang Y , et al . Simultaneous optimization of multi-plant heat integration using intermediate fluid circles[J]. Energy, 2016, 121: 306-317.
|
31 |
Rosenthal R E . GAMS—A User’s Guide[M]. Washington D C: GAMS Development Corporation, 2012.
|