化工学报 ›› 2019, Vol. 70 ›› Issue (6): 2229-2236.DOI: 10.11949/j.issn.0438-1157.20181325
收稿日期:
2018-11-12
修回日期:
2019-03-04
出版日期:
2019-06-05
发布日期:
2019-06-05
通讯作者:
朱锡锋
作者简介:
<named-content content-type="corresp-name">黄凌瑞</named-content>(1996—),男,硕士研究生,<email>hlr@mail.ustc.edu.cn</email>
基金资助:
Received:
2018-11-12
Revised:
2019-03-04
Online:
2019-06-05
Published:
2019-06-05
Contact:
Xifeng ZHU
摘要:
采用固定床热解反应系统对稻壳负载尿素进行了热解耦合分级冷凝的研究,实验采用三级冷凝的方法,对比了热解温度(400、500、600℃)和冷凝温度(30、60、90℃)对产物分布和富集的影响,研究了生物质富氮热解和分级冷凝的机理。结果表明:富氮热解促进了Maillard反应产生含氮杂环物;分级冷凝富集规律明显,一级生物油富集了高露点的酚类,二级生物油富集了低露点的含氮杂环物;提高热解温度可以增加二级生物油中含氮杂环物的含量和降低二级生物油水分含量,热解温度为500℃时,液体产物产率和酚类产物产率最大;提高冷凝温度能增强各级油组分的富集效果,并降低一级生物油水分含量,一级冷凝温度为90℃时,水分几乎完全富集在第二级中,且一级生物油酚类产物含量最高。
中图分类号:
黄凌瑞, 朱锡锋. 富氮生物质热解气的分级冷凝特性研究[J]. 化工学报, 2019, 70(6): 2229-2236.
Lingrui HUANG, Xifeng ZHU. Study on fractional condensation of pyrolysis vapors of nitrogen-enriched biomass[J]. CIESC Journal, 2019, 70(6): 2229-2236.
元素分析/%(mass,ar) | 工业分析/%(mass,ar) | |||||||
---|---|---|---|---|---|---|---|---|
C | H | O① | N | S | M | V | A | FC② |
35.91 | 5.00 | 38.17 | 7.25 | 0.34 | 9.39 | 63.64 | 13.33 | 13.64 |
表1 热解原料的元素分析和工业分析
Table 1 Proximate analysis and ultimate analysis of pyrolysis feedstock
元素分析/%(mass,ar) | 工业分析/%(mass,ar) | |||||||
---|---|---|---|---|---|---|---|---|
C | H | O① | N | S | M | V | A | FC② |
35.91 | 5.00 | 38.17 | 7.25 | 0.34 | 9.39 | 63.64 | 13.33 | 13.64 |
实验 编号 | 热解 温度/℃ | 一级冷凝 温度/℃ | 二级冷凝 温度/℃ | 三级冷凝 温度/℃ |
---|---|---|---|---|
1 | 400 | 60 | 0 | -196 |
2 | 500 | 30 | 0 | -196 |
3 | 500 | 60 | 0 | -196 |
4 | 500 | 90 | 0 | -196 |
5 | 600 | 60 | 0 | -196 |
表2 稻壳负载尿素热解耦合分级冷凝的实验条件
Table 2 Experimental conditions for pyrolysis of urea-impregnated rice husk coupled with fractional condensation
实验 编号 | 热解 温度/℃ | 一级冷凝 温度/℃ | 二级冷凝 温度/℃ | 三级冷凝 温度/℃ |
---|---|---|---|---|
1 | 400 | 60 | 0 | -196 |
2 | 500 | 30 | 0 | -196 |
3 | 500 | 60 | 0 | -196 |
4 | 500 | 90 | 0 | -196 |
5 | 600 | 60 | 0 | -196 |
实验 编号 | 实验条件 | 高位热值/(MJ/kg) | |||
---|---|---|---|---|---|
热解 温度/℃ | 一级冷凝 温度/℃ | Oil-1 | Oil-2 | Oil-3 | |
1 | 400 | 60 | 15.24 | 14.86 | 15.15 |
2 | 500 | 30 | 15.94 | 15.59 | 15.36 |
3 | 500 | 60 | 16.60 | 15.27 | 15.29 |
4 | 500 | 90 | 17.98 | 14.98 | 15.18 |
5 | 600 | 60 | 17.31 | 15.91 | 15.46 |
表3 各级生物油的热值
Table 3 Calorific value of bio-oil at all stages
实验 编号 | 实验条件 | 高位热值/(MJ/kg) | |||
---|---|---|---|---|---|
热解 温度/℃ | 一级冷凝 温度/℃ | Oil-1 | Oil-2 | Oil-3 | |
1 | 400 | 60 | 15.24 | 14.86 | 15.15 |
2 | 500 | 30 | 15.94 | 15.59 | 15.36 |
3 | 500 | 60 | 16.60 | 15.27 | 15.29 |
4 | 500 | 90 | 17.98 | 14.98 | 15.18 |
5 | 600 | 60 | 17.31 | 15.91 | 15.46 |
时间/min | 物质名称 | 化学式 | 相对峰面积/% | ||
---|---|---|---|---|---|
Oil-1 | Oil-2 | Oil-3 | |||
3.51 | 2,5-二甲基呋喃 | C6H8O | — | — | 1.63 |
4.35 | N-甲基吡咯 | C5H7N | — | — | 1.77 |
3.38 | 乙酸 | C2H4O2 | 11.52 | 14.24 | — |
4.53 | 丙酸 | C3H6O2 | 0.82 | 0.74 | 0.79 |
4.99 | 吡咯 | C4H5N | 2.62 | 6.56 | 3.37 |
6.00 | 2-甲基嘧啶 | C5H6N2 | — | 1.43 | — |
8.19 | 糠醇 | C5H6O2 | 1.08 | 1.73 | — |
9.28 | 2-乙基吡嗪 | C6H8N2 | — | 1.06 | — |
12.51 | 3-甲基-2-环戊烯-1-酮 | C6H8O | 0.70 | — | — |
13.84 | 苯酚 | C6H6O | 2.81 | 0.78 | — |
15.70 | 3-甲基环戊烷-1,2-二酮 | C6H8O2 | 2.10 | — | — |
16.96 | 间甲酚 | C7H8O | 1.09 | 0.92 | — |
18.11 | 愈创木酚 | C7H8O2 | 7.29 | 8.11 | 4.56 |
21.28 | 3,4-二甲基苯酚 | C8H10O | 0.89 | 0.75 | — |
22.23 | 4-乙基苯酚 | C8H10O | 4.68 | 5.16 | 3.21 |
22.96 | 4-甲基愈创木酚 | C8H10O2 | 4.56 | 4.05 | 4.12 |
24.82 | 2,3-二氢苯丙呋喃 | C8H8O | 7.54 | 5.09 | 3.47 |
26.20 | 2,7-二叔丁基萘 | C18H24 | — | — | 1.52 |
26.86 | 4-乙基愈创木酚 | C9H12O2 | 4.69 | 3.93 | 4.51 |
28.48 | 对乙烯基愈创木酚 | C9H10O2 | 5.16 | — | 6.10 |
30.31 | 4-烯丙基-2-甲氧基苯酚 | C10H12O2 | 3.29 | 2.51 | 1.65 |
30.69 | 1-(4-甲氧苯基)-1-丙醇 | C10H14O2 | 0.82 | 0.66 | 1.53 |
32.47 | (反)异丁香酚 | C10H12O2 | 0.93 | 0.66 | 1.07 |
34.23 | 异丁香酚 | C10H12O2 | 5.78 | 1.66 | 5.78 |
38.97 | 左旋葡聚糖 | C6H10O5 | 2.13 | 2.39 | 4.20 |
43.99 | 4-烯丙基-2,6-二甲氧基苯酚 | C11H14O3 | 1.13 | — | — |
表4 生物油的主要组分及相对峰面积
Table 4 Main components and relative peak areas in bio-oil
时间/min | 物质名称 | 化学式 | 相对峰面积/% | ||
---|---|---|---|---|---|
Oil-1 | Oil-2 | Oil-3 | |||
3.51 | 2,5-二甲基呋喃 | C6H8O | — | — | 1.63 |
4.35 | N-甲基吡咯 | C5H7N | — | — | 1.77 |
3.38 | 乙酸 | C2H4O2 | 11.52 | 14.24 | — |
4.53 | 丙酸 | C3H6O2 | 0.82 | 0.74 | 0.79 |
4.99 | 吡咯 | C4H5N | 2.62 | 6.56 | 3.37 |
6.00 | 2-甲基嘧啶 | C5H6N2 | — | 1.43 | — |
8.19 | 糠醇 | C5H6O2 | 1.08 | 1.73 | — |
9.28 | 2-乙基吡嗪 | C6H8N2 | — | 1.06 | — |
12.51 | 3-甲基-2-环戊烯-1-酮 | C6H8O | 0.70 | — | — |
13.84 | 苯酚 | C6H6O | 2.81 | 0.78 | — |
15.70 | 3-甲基环戊烷-1,2-二酮 | C6H8O2 | 2.10 | — | — |
16.96 | 间甲酚 | C7H8O | 1.09 | 0.92 | — |
18.11 | 愈创木酚 | C7H8O2 | 7.29 | 8.11 | 4.56 |
21.28 | 3,4-二甲基苯酚 | C8H10O | 0.89 | 0.75 | — |
22.23 | 4-乙基苯酚 | C8H10O | 4.68 | 5.16 | 3.21 |
22.96 | 4-甲基愈创木酚 | C8H10O2 | 4.56 | 4.05 | 4.12 |
24.82 | 2,3-二氢苯丙呋喃 | C8H8O | 7.54 | 5.09 | 3.47 |
26.20 | 2,7-二叔丁基萘 | C18H24 | — | — | 1.52 |
26.86 | 4-乙基愈创木酚 | C9H12O2 | 4.69 | 3.93 | 4.51 |
28.48 | 对乙烯基愈创木酚 | C9H10O2 | 5.16 | — | 6.10 |
30.31 | 4-烯丙基-2-甲氧基苯酚 | C10H12O2 | 3.29 | 2.51 | 1.65 |
30.69 | 1-(4-甲氧苯基)-1-丙醇 | C10H14O2 | 0.82 | 0.66 | 1.53 |
32.47 | (反)异丁香酚 | C10H12O2 | 0.93 | 0.66 | 1.07 |
34.23 | 异丁香酚 | C10H12O2 | 5.78 | 1.66 | 5.78 |
38.97 | 左旋葡聚糖 | C6H10O5 | 2.13 | 2.39 | 4.20 |
43.99 | 4-烯丙基-2,6-二甲氧基苯酚 | C11H14O3 | 1.13 | — | — |
1 | Isa Y M , Ganda E T . Bio-oil as a potential source of petroleum range fuels[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 69-75. |
2 | Chen D Y , Mei J M , Li H P , et al . Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products[J]. Bioresource Technology, 2017, 228: 62-68. |
3 | Zhang L Q , Li S S , Li K , et al . Two-step pyrolysis of corncob for value-added chemicals and high quality bio-oil: effects of pyrolysis temperature and residence time[J]. Energy Conversion and Management, 2018, 166: 260-267. |
4 | Zhang Q , Chang J , Wang T J , et al . Review of biomass pyrolysis oil properties and upgrading research[J]. Energy Conversion and Management, 2007, 48(1): 87-92. |
5 | Maddi B , Viamajala S , Varanasi S . Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass[J]. Bioresource Technology, 2011, 102(23): 11018-11026. |
6 | Yuan T , Tahmasebi A , Yu J . Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor[J]. Bioresource Technology, 2015, 175: 333-341. |
7 | Li K , Zhu C P , Zhang L Q , et al . Study on pyrolysis characteristics of lignocellulosic biomass impregnated with ammonia source[J]. Bioresource Technology, 2016, 209: 142-147. |
8 | 闻明, 张世红, 邵敬爱, 等 . 生物质富氮热解联产高值含氮油炭的理化特性[J]. 农业工程学报, 2015, 31(13): 229-235. |
Wen M , Zhang S H , Shao J A , et al . Physicochemical properties of nitrogen rich in oil and char during biomass nitrogen-rich pyrolysis[J] Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(13): 229-235. | |
9 | 王景华, 崔洪友, 李志和, 等 . 生物油的性质及其分离研究进展[J]. 化工进展, 2009, (12): 2099-2104. |
Wang J H , Cui H Y , Li Z H , et al . Research progress in the separation and purification of bio-oil[J]. Chemical Industry and Engineering Progress, 2009, (12): 2099-2104. | |
10 | 王誉蓉, 王树荣, 王相宇, 等 . 不同蒸馏压力下的生物油分子蒸馏分离特性研究[J]. 燃料化学学报, 2013, 41(2): 177-182. |
Wang Y R , Wang S R , Wang X Y , et al . Molecular distillation separation characteristic of bio-oil under different pressures[J]. Journal of Fuel Chemistry and Technology, 2013, 41(2): 177-182. | |
11 | 韩平, 蒋恩臣, 王明峰, 等 . 生物油分级冷凝研究进展[J]. 农业机械学报, 2016, 47(5): 164-170. |
Han P , Jiang E C , Wang M F , et al . Research progress in fractional condensation of bio-oil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(5): 164-170. | |
12 | Gooty A T , Li D B , Berruti F , et al . Kraft-lignin pyrolysis and fractional condensation of its bio-oil vapors[J]. Journal of Analytical and Applied Pyrolysis, 2014, 106: 33-40. |
13 | Sui H Q , Yang H P , Shao J G , et al . Fractional condensation of multicomponent vapors from pyrolysis of cotton stalk[J]. Energy & Fuels, 2014, 28(8): 5095-5102. |
14 | Westerhof R J M , Brilman D W F , Garcia-Perez M , et al . Fractional condensation of biomass pyrolysis vapors[J]. Energy & Fuels, 2011, 25(4): 1817-1829. |
15 | 王储, 朱锡锋 . 分级冷凝生物油组分富集与组分稳定性研究[J]. 燃料化学学报, 2018, 46(11): 1315-1322. |
Wang C , Zhu X F . Study on component enrichment and storage stability of bio-oils obtained from fractional condensation[J]. Journal of Fuel Chemistry and Technology, 2018, 46(11): 1315-1322. | |
16 | 朱锡锋, 朱昌朋 . 生物质热解液化与美拉德反应[J]. 燃料化学学报, 2013, 41(8): 911-916. |
Zhu X F , Zhu C P . Biomass fast pyrolysis and Maillard reaction [J]. Journal of Fuel Chemistry and Technology, 2013, 41(8): 911-916. | |
17 | 栗冬, 郭强, 郝代林, 等 . 温度对稻草流化床快速热解液相产物影响的研究[J]. 燃料化学学报, 2010, 38(1): 47-51. |
Li D , Guo Q , Hao D L , et al . Effect of temperature on the bio-oil from fast pyrolysis of straw in a fluidized bed reactor[J]. Journal of Fuel Chemistry and Technology, 2010, 38(1): 47-51. | |
18 | Huang J , Zhang J , Wang L . Review of vapor condensation heat and mass transfer in the presence of non-condensable gas[J]. Applied Thermal Engineering, 2015, 89: 469-484. |
19 | 隋海清 . 生物质热解气分级冷凝机制及其产物的应用研究[D]. 武汉: 华中科技大学, 2016. |
Sui H Q . Study on the machanism of fractional condensation for pyrolysis vapors and the products application[D]. Wuhan: Huazhong University of Science and Technology, 2016. | |
20 | Ma S W , Zhang L Q , Zhu L , et al . Preparation of multipurpose bio-oil from rice husk by pyrolysis and fractional condensation[J]. Journal of Analytical and Applied Pyrolysis, 2018, 131: 113-119. |
21 | Gooty A T , Li D , Briens C , et al . Fractional condensation of bio-oil vapors produced from birch bark pyrolysis[J]. Separation and Purification Technology, 2014, 124: 81-88. |
22 | Tsai W T , Lee M K , Chang Y M . Fast pyrolysis of rice husk: product yields and compositions[J]. Bioresource Technology, 2007, 98(1): 22-28. |
23 | Pollard A S , Rover M R , Brown R C . Characterization of bio-oil recovered as stage fractions with unique chemical and physical properties[J]. Journal of Analytical and Applied Pyrolysis, 2012, 93: 129-138. |
24 | Johansson A C , Iisa K , Sandström L , et al . Fractional condensation of pyrolysis vapors produced from Nordic feedstocks in cyclone pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2017, 123: 244-254. |
25 | 王楷, 郭庆杰, 杨林 . 微拟球藻脂肪热解及对全组分制备生物油的影响[J]. 燃料化学学报, 2016, 44(1): 60-68. |
Wang K , Guo Q J , Yang L . Pyrolysis of fat from Nannochloropsis sp. and its effect on bio-oil from pyrolysis of all components[J]. Journal of Fuel Chemistry and Technology, 2016, 44(1): 60-68. | |
26 | 韩平 . 生物质连续热解挥发物分级冷凝特性研究[D]. 哈尔滨: 东北农业大学, 2017. |
Han P . Study on fractional condensation characteristics of biomass continuous pyrolysis volatiles[D]. Harbin: Northeast Agricultural University, 2017. | |
27 | 李凯 . 木质纤维素类生物质负载氨源及钾盐热解实验研究[D]. 合肥: 中国科学技术大学, 2016. |
Li K . Experimental study on the pyrolysis characteristics of lignocellulosic biomass impregnated with ammonia source and potassium salts[D]. Hefei: University of Science and Technology of China, 2016. | |
28 | 隋海清, 李攀, 王贤华, 等 . 生物质热解气分级冷凝对生物油特性的影响[J]. 化工学报, 2015, 66(10): 4138-4144. |
Sui H Q , Li P , Wang X H , et al . Influence on bio-oil by fractional condensation of biomass pyrolysis vapor[J]. CIESC Journal, 2015, 66(10): 4138-4144. | |
29 | Li K , Zhang L Q , Zhu L , et al . Comparative study on pyrolysis of lignocellulosic and algal biomass using pyrolysis-gas chromatography/mass spectrometry[J]. Bioresour. Technol., 2017, 234: 48-52. |
30 | 丁徐红, 常胜, 赵增立, 等 . 富氮生物油理化性质表征及其热解特性研究[J]. 可再生能源, 2014, 32(5): 680-686. |
Ding X H , Chang S , Zhao Z L , et al . Study on properties and pyrolysis behavior of nitrogen-enriched bio-oil[J]. Renewable Energy Resources, 2014, 32(5): 680-686. | |
31 | Li M F , Fan Y M , Xu F , et al . Cold sodium hydroxide/urea based pretreatment of bamboo for bioethanol production: characterization of the cellulose rich fraction[J]. Industrial Crops and Products, 2010, 32(3): 551-559. |
32 | 王树荣, 骆仲泱 . 生物质组分热裂解 [M].北京: 科学出版社, 2013: 190-192. |
Wang S R , Luo Z Y . Pyrolysis of Biomass Components[M]. Beijing: Science Press, 2013: 190-192. | |
33 | 张军, 范志林, 林晓芬, 等 . 生物质快速热解过程中产物的在线测定[J]. 东南大学学报(自然科学版), 2005, 35(1): 16-19. |
Zhang J , Fan Z L , Lin X F , et al . Online measurement of products during fast pyrolysis of biomass[J]. Journal of Southeast University (Natural Science Edition), 2005, 35(1): 16-19. |
[1] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[2] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[3] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[4] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[5] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[6] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[7] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[8] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[9] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[10] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[11] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[12] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[13] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[14] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[15] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||