1 |
LiQ, ChenZ A, ZhangJ T, et al. Positioning and revision of CCUS technology development in China[J]. International Journal of Greenhouse Gas Control, 2016, 46: 282-293.
|
2 |
WareingC J, FairweatherM, FalleS A E G, et al. Validation of a model of gas and dense phase CO2 jet releases for carbon capture and storage application[J]. International Journal of Greenhouse Gas Control, 2014, 20: 254-271.
|
3 |
KoornneefJ, SpruijtM, MolagM, et al. Uncertainties in risk assessment of CO2 pipelines[J]. Energy Procedia, 2009, 1: 1587-1594.
|
4 |
RianK E, GrimsmoB, LaksaB, et al. Advanced CO2 dispersion simulation technology for improved CCS safety[J]. Energy Procedia, 2014, 63: 2596-2609.
|
5 |
BrownS, MartynovS, MahgereftehH, et al. A homogeneous relaxation flow model for the full bore rupture of dense phase CO2 pipelines[J]. International Journal of Greenhouse Gas Control, 2013, 17(9): 349-356.
|
6 |
WeeJ H. A review on carbon dioxide capture and storage technology using coal fly ash[J]. Apply Energy, 2013, 106(11): 143-151.
|
7 |
HasanM M F, FirstE L, BoukouvalaF, et al. A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCS[J]. Computers & Chemical Engineering, 2015, 81: 2-21.
|
8 |
MartynovS, BrownS, MahgereftehH, et al. Modelling three-phase releases of carbon dioxide from high-pressure pipelines[J].Process Safety and Environmental Protection, 2014, 92(1): 36-46.
|
9 |
WoolleyR M, FairweatherM, WareingC J, et al. An integrated, multi-scale modelling approach for the simulation of multiphase dispersion from accidental CO2 pipeline releases in realistic terrain[J]. International Journal of Greenhouse Gas Control, 2014, 27(8): 221-238.
|
10 |
WoolleyR M, FairweatherM, WareingC J, et al. Experimental measurement and Reynolds-averaged Navier–Stokes modelling of the near-field structure of multi-phase CO2 jet releases[J]. International Journal of Greenhouse Gas Control, 2013, 18: 139-149.
|
11 |
KoeijerG D, BorchJ H, JakobsenJ, et al. Experiments and modeling of two-phase transient flow during CO2 pipeline depressurization[J]. Energy Procedia, 2009, 1: 1683-1689.
|
12 |
DrescherM, VarholmK, MunkejordS T, et al. Experiments and modelling of two-phase transient flow during pipeline depressurization of CO2 with various N2 compositions[J]. Energy Procedia, 2014, 63: 2448-2457.
|
13 |
CoshamA, JonesD G, ArmstrongK, et al. Ruptures in gas pipelines, liquid pipelines and dense phase carbon dioxide pipelines[C]// Proceedings of the 2012 9th International Pipeline Conference. 2012.
|
14 |
MohitpourM, SeevamP, BotrosK K, et al. Pipeline Transportation of Carbon Dioxide Containing Impurities[M]. New York: ASME Press, 2012.
|
15 |
LiK, ZhouX J, TuR, et al. The flow and heat transfer characteristics of supercritical CO2 leakage from a pipeline[J]. Energy, 2014, 71: 665-672.
|
16 |
LiK, ZhouX J, JiangX, et al. An experiment investigation of supercritical CO2 accidental release from a pressurized pipeline[J]. The Journal of Supercritical Fluids, 2016, 107: 298-306.
|
17 |
顾帅威, 李玉星, 藤霖, 等. 小尺度超临界CO2管道小孔泄漏减压及温降特性[J]. 化工进展, 2019, 38(2): 805-812.
|
|
GuS W, LiY X, TengL, et al. Decompression and temperature drop characteristics of small-scale supercritical CO2 pipeline leakage with small holes[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 805-812.
|
18 |
ZhaoQ, LiY X. The influence of impurities on the transportation safety of an anthropogenic CO2 pipeline[C]//Process Safety and Environmental Protection, V92.1.2014.1: 80-92.
|
19 |
GuS, LiY, TengL, et al. A new model for predicting the decompression behavior of CO2 mixtures in various phases[J] Process Safety and Environmental Protection, 2018, 120: 237-247.
|
20 |
刘振翼, 周轶, 黄平, 等. CO2管线泄漏扩散小尺度实验研究[J]. 化工学报, 2012, 63(5): 1651-1659.
|
|
LiuZ Y, ZhouY, HuangP, et al. Scaled field test for CO2 leakage and dispersion from pipelines[J]. CIESC Journal, 2012, 63(5): 1651-1659.
|
21 |
钱新明, 刘彧, 刘振翼. 管道输送二氧化碳泄漏模型研究进展及展望[J]. 安全与环境学报, 2013, 13(2): 201-206.
|
|
QianX M, LiuY, LiuZ Y. Advances and prospects of the study of modeling CO2 accidental releases from a pipeline[J] Journal of Safety and Environment, 2013, 13(2): 201-206.
|
22 |
ZhouY, LiuZ Y, LiuY, et al. Flammability and explosion property of gases in the one-step process of propane oxidation to acrylic acid[J]. China Petroleum Processing and Petrochemical Technology, 2013, 15(1):40-47.
|
23 |
ZhouY, LiuZ Y, QianH, et al. Small-scale experiments of CO2 boiling liquid expanding vapor explosion in injection pipes[J]. Energy Procedia, 2014, 61:782-786.
|
24 |
GuoX, YanX, YuJ, et al. Pressure responses and phase transitions during the release of high pressure CO2 from a large-scale pipeline[J]. Energy, 2016: 1-13.
|
25 |
喻健良, 朱海龙, 郭晓璐, 等. 超临界CO2管道减压过程中的热力学特性[J]. 化工学报, 2017, 68(9): 3350-3357.
|
|
YuJ L, ZhuH L, GuoX L, et al. Thermodynamic properties during depressurization process of supercritical CO2 pipeline[J]. CIESC Journal, 2017, 68(9): 3350-3357.
|
26 |
GuoX, YanX, YuJ, et al. Under-expanded jets and dispersion in supercritical CO2 releases from a large-scale pipeline[J]. Applied Energy, 2016, 183: 1279-1291.
|
27 |
GuoX, YanX, YuJ, et al. Pressure response and phase transition in supercritical CO2 releases from a large-scale pipeline[J]. Applied Energy, 2016, 178: 189-197.
|
28 |
WangZ, SunB, YanL. Improved density correlation for supercritical CO2[J]. Chemical Engineering & Technology, 2015, 38(1): 75-84.
|
29 |
TangG, ShiH, WuY, et al. A variable turbulent Prandtl number model for simulating supercritical pressure CO2 heat transfer[J]. International Journal of Heat and Mass Transfer, 2016, 102: 1082-1092.
|