化工学报 ›› 2019, Vol. 70 ›› Issue (8): 3058-3070.DOI: 10.11949/0438-1157.20190184

• • 上一篇    下一篇

近临界区CO2物性预测模型对比与修正

章聪(),江锦波,彭旭东(),赵文静,李纪云   

  1. 浙江工业大学过程装备及其再制造教育部工程研究中心,浙江 杭州 310014
  • 收稿日期:2019-03-04 修回日期:2019-05-22 出版日期:2019-08-05 发布日期:2019-08-05
  • 通讯作者: 彭旭东
  • 作者简介:章聪(1995—),男,硕士研究生,<email>zc_derek@163.com</email>
  • 基金资助:
    国家自然科学基金项目(51705458);浙江省自然科学基金项目(LQ17E050008)

Comparison and correction of CO2 properties model in critical region

Cong ZHANG(),Jinbo JIANG,Xudong PENG(),Wenjing ZHAO,Jiyun LI   

  1. Engineering Research Center of Process Equipment and Its Remanufacturing of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
  • Received:2019-03-04 Revised:2019-05-22 Online:2019-08-05 Published:2019-08-05
  • Contact: Xudong PENG

摘要:

超临界二氧化碳(SCO2)布雷顿循环系统是未来极具潜力的发电能量转换系统,CO2物性表征模型对布雷顿循环系统中动力设备转轴密封和轴承性能的预测精度影响显著。在总结权威文献中不同温度和压力下CO2物性实验测试数据的基础上,对比分析了经典物性查询软件REFPROP软件中CO2密度、黏度和热导率预测模型的预测精度,获得了预测精度最高的物性预测模型及对应临界点附近误差较大的区域,采用人工神经网络算法获得了近临界区预测精度更高的CO2物性预测模型。结果表明:REFPROP软件中的FEK模型、VS1模型和TC1模型分别对CO2的密度、黏度和热导率具有最高的预测精度,不过其在近临界区的物性预测最大和平均误差仍分别达到40%和8%以上,利用神经网络算法所获得的CO2物性预测模型可使近临界点区的物性预测最大和平均误差分别降至30%和4%以下。

关键词: 二氧化碳, REFPROP软件, 物性表征模型, 神经网络, 近临界区

Abstract:

The supercritical carbon dioxide (SCO2) Brayton cycle system is a promising power generation energy conversion system in the future. The CO2 physical property characterization model has a significant impact on the prediction accuracy of the power equipment shaft seal and bearing performance in the Brayton cycle system. On the basis of summarizing the experimental data of CO2 physical properties under different temperatures and pressures in authoritative literature, the prediction accuracy of CO2 density, viscosity and thermal conductivity prediction model in the classical physical property query software REFPROP software is compared and analyzed, and the physical prediction model with the highest prediction accuracy is obtained. The artificial neural network algorithm is used to obtain the prediction model of CO2 physical property with higher precision in near critical region. The results show that the FEK model, VS1 model and TC1 model in REFPROP software have the highest prediction accuracy for CO2 density, viscosity and thermal conductivity, respectively, but the maximum and average error predictions in the near critical region are still more than 40% and 8%, the CO2 physical property prediction model obtained by the neural network algorithm can reduce the maximum and average error prediction of the near critical point area to 30% and 4%, respectively.

Key words: carbon dioxide, REFPROP software, physical property characterization model, neural network, near critical region

中图分类号: