化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 54-61.DOI: 10.11949/0438-1157.20190521
收稿日期:
2019-05-15
修回日期:
2019-05-27
出版日期:
2019-09-06
发布日期:
2019-09-06
通讯作者:
唐大伟
作者简介:
张中印(1991—),男,硕士研究生,基金资助:
Zhongyin ZHANG(),Chengyang YUAN,Xuanhui FAN,Jie ZHU,Jiafei ZHAO,Dawei TANG()
Received:
2019-05-15
Revised:
2019-05-27
Online:
2019-09-06
Published:
2019-09-06
Contact:
Dawei TANG
摘要:
四氢呋喃水合物(THF)是典形的笼形水合物,目前有关其热导率的报道较少,且都存在测量样品不是单一相、测量过程水合物发生分解等问题。采用基于飞秒脉冲激光的时域热反射法(TDTR)测量THF热导率。根据样品常温下是流体的特点,设计了可同时适用样品制备及TDTR测量的温控台,实现THF热导率非接触原位测量。获得THF热导率为0.6 W/(m?K),Al/THF界面热导为90.3 MW/(m2?K)。该实验结果有助于理解并完善固体水合物微观导热机理,明晰水分子笼子和客体分子的耦合关系。
中图分类号:
张中印,袁诚阳,樊轩辉,祝捷,赵佳飞,唐大伟. 基于TDTR技术水合物热导率测量方法[J]. 化工学报, 2019, 70(S2): 54-61.
Zhongyin ZHANG,Chengyang YUAN,Xuanhui FAN,Jie ZHU,Jiafei ZHAO,Dawei TANG. Thermal conductivity measurement of hydrate based on TDTR technology[J]. CIESC Journal, 2019, 70(S2): 54-61.
厚度/ | 纯度 | C/( | λ/(W/(m?K)) |
---|---|---|---|
500 | >99.99% | 1.63 | 1.30 |
表1 石英玻璃参数
Table 1 Quartz glass parameters
厚度/ | 纯度 | C/( | λ/(W/(m?K)) |
---|---|---|---|
500 | >99.99% | 1.63 | 1.30 |
α | Sα | Sα /Sx | Ex , α /% | Ex /% |
---|---|---|---|---|
α = α Al | 0.455 | 1.5696 | 3.1392 | 10.18 |
α = | 0.51688 | 1.7831 | 8.9155 | |
α = | 0.219134 | 0.756 | 3.78 | |
x = | 0.289874 |
表2 THF热导率测试过程中各参数误差传递过程
Table 2 Error propagation of various parameters during THF thermal conductivity test
α | Sα | Sα /Sx | Ex , α /% | Ex /% |
---|---|---|---|---|
α = α Al | 0.455 | 1.5696 | 3.1392 | 10.18 |
α = | 0.51688 | 1.7831 | 8.9155 | |
α = | 0.219134 | 0.756 | 3.78 | |
x = | 0.289874 |
α | Sα | Sα /Sx | Ex , α /% | Ex /% |
---|---|---|---|---|
α = δ Al | 0.455 | 2.718 | 5.436 | 16.58 |
α = | 0.51688 | 3.088 | 15.44 | |
α = | 0.219134 | 1.3092 | 2.6184 | |
x =G Al/THF | 0.167386 |
表3 Al/THF界面热导测试过程中各参数误差传递过程
Table 3 Error propagation of various parameters during Al/THF interface thermal conductance test
α | Sα | Sα /Sx | Ex , α /% | Ex /% |
---|---|---|---|---|
α = δ Al | 0.455 | 2.718 | 5.436 | 16.58 |
α = | 0.51688 | 3.088 | 15.44 | |
α = | 0.219134 | 1.3092 | 2.6184 | |
x =G Al/THF | 0.167386 |
1 | Sloan Jr E D , Koh C A . Clathrate Hydrates of Natural Gases [M]. Boca Raton: CRC Press, 2007. |
2 | Waite W F , Stern L A , Kirby S H , et al . Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate [J]. Geophysical Journal International, 2007, 169(2): 767-774. |
3 | Rosenbaum E J , English N J , Johnson J K , et al . Thermal conductivity of methane hydrate from experiment and molecular simulation [J]. The Journal of Physical Chemistry B, 2007, 111(46): 13194-13205. |
4 | Gupta A , Kneafsey T J , Moridis G J , et al . Composite thermal conductivity in a large heterogeneous porous methane hydrate sample [J]. The Journal of Physical Chemistry B, 2006, 110(33): 16384-16392. |
5 | Andersson P , Ross R G . Effect of guest molecule size on the thermal conductivity and heat capacity of clathrate hydrates [J]. Journal of Physics C: Solid State Physics, 1983, 16(8): 1423-1432. |
6 | Andersson O , Suga H . Thermal conductivity of normal and deuterated tetrahydrofuran clathrate hydrates [J]. Journal of Physics and Chemistry of Solids, 1996, 57(1): 125-132. |
7 | Cook J G , Leaist D G . An exploratory study of the thermal conductivity of methane hydrate [J]. Geophysical Research Letters, 2013, 10(5): 397-399. |
8 | Huang D , Fan S . Thermal conductivity of methane hydrate formed from sodium dodecyl sulfate solution [J]. Journal of Chemical & Engineering Data, 2004, 49(5): 1479-1482. |
9 | Ross R G , Andersson P , Bäckström G . Unusual PT dependence of thermal conductivity for a clathrate hydrate [J]. Nature, 1981, 290(5804): 322-323. |
10 | Huang D Z , Fan S S . Thermal conductivity of methane hydrate formed from sodium dodecyl sulfate solution [J]. Journal of Chemical & Engineering Data, 2004, 49(5): 1479-1482. |
11 | Rosenbaum E J , English N J , Johnson J K , et al . Thermal conductivity of methane hydrate from experiment and molecular simulation [J]. Journal of Physical Chemistry B, 2007, 111(46): 13194-13205. |
12 | Waite W F , Stern L A , Kirby S H , et al . Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate [J]. Geophysical Journal International, 2010, 169(2): 767-774. |
13 | Krivchikov A I , Gorodilov B Y , Korolyuk O A , et al . Thermal conductivity of methane-hydrate [J]. Journal of Low Temperature Physics, 2005, 139(5/6): 693-702. |
14 | Handa Y P , Cook J G . Thermal conductivity of xenon hydrate [J]. Journal of Physical Chemistry, 2002, 91(25): 6327-6328. |
15 | Krivchikov A I , Gorodilov B Y , Korolyuk O A , et al . Thermal conductivity of Xe clathrate hydrate at low temperatures [J]. Physical Review B, 2006, 73(6): 064203. |
16 | Cohn J L , Nolas G S , Fessatidis V , et al . Glasslike heat conduction in high-mobility crystalline semiconductors [J]. Physical Review Letters, 1998, 82(4): 779-782. |
17 | Stoll R D , Bryan G M . Physical properties of sediments containing gas hydrates [J]. Journal of Geophysical Research Solid Earth, 2012, 84(B4): 1629-1634. |
18 | Ross R G , Andersson P . Clathrate and other solid phases in the tetrahydrofuran–water system [J]. Canadian Journal of Chemistry, 1982, 60(60): 881-892. |
19 | Tse J S , White M A . Origin of glassy crystalline behavior in the thermal properties of clathrate hydrates: a thermal conductivity study of tetrahydrofuran hydrate [J]. Journal of Physical Chemistry, 1988, 92(17): 5006-5011. |
20 | Li D , Liang D , Peng H , et al . Thermal conductivities of methane-methylcyclohexane and tetrabutylammonium bromide clathrate hydrate [J]. Journal of Thermal Analysis & Calorimetry, 2015, 123(2): 1-7. |
21 | Krivchikov A I , Manzhelii V G , Korolyuk O A , et al . Thermal conductivity of tetrahydrofuran hydrate [J]. Physical Chemistry Chemical Physics Pccp, 2005, 7(5): 728-730. |
22 | Nolas G S , Beekman M , Gryko J , et al . Thermal conductivity of elemental crystalline silicon clathrate Si136 [J]. Applied Physics Letters, 2003, 82(6): 910-912. |
23 | Yang J , Morelli D T , Meisner G P , et al . Effect of Sn substituting for Sb on the low-temperature transport properties of ytterbium-filled skutterudites [J]. Physical Review B, 2003, 67(16): 165207. |
24 | Tritt T M . Thermal Conductivity: Theory, Properties, and Applications [M]. Berlin: Springer Science & Business Media, 2005. |
25 | Jiang H , Myshakin E M , Jordan K D , et al . Molecular dynamics simulations of the thermal conductivity of methane hydrate [J]. The Journal of Physical Chemistry B, 2008, 112(33): 10207-10216. |
26 | English N J , Tse J S . Mechanisms for thermal conduction in methane hydrate [J]. Physical Review Letters, 2009, 103(1): 015901. |
27 | Thomsen C , Grahn H T , Maris H J , et al . Surface generation and detection of phonons by picosecond light pulses [J]. Phys. Rev. B Condens. Matter, 1986, 34(6): 4129-4138. |
28 | Cahill D G . Analysis of heat flow in layered structures for time-domain thermoreflectance [J]. Review of Scientific Instruments, 2004, 75(12): 5119-5122. |
29 | 姚贵策, 苑昆鹏, 吴硕, 等 . 独立探头3ω法表征甲烷水合物热导率和热扩散率 [J]. 化工学报, 2016, 67(5): 1665-1672. |
Yao G C , Yuan K P , Wu S , et al . Characterizing of thermal conductivity and thermal diffusivity of methane hydrate by free-standing sensor 3ω method [J]. CIESC Journal, 2016, 67(5): 1665-1672. | |
30 | Handa Y P , Hawkins R E , Murray J J . Calibration and testing of a Tian-Calvet heat-flow calorimeter Enthalpies of fusion and heat capacities for ice and tetrahydrofuran hydrate in the range 85 to 270 K ☆ [J]. Journal of Chemical Thermodynamics, 1984, 16(7): 623-632. |
31 | Gundrum B C , Cahill D G , Averback R S . Thermal conductance of metal-metal interfaces [J]. Physical Review B, 2005, 72(24): 245426. |
[1] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[2] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[3] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[4] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[5] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[6] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[7] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[8] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[9] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[10] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[11] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[12] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[13] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[14] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[15] | 杨辉著, 兰精灵, 杨月, 梁嘉林, 吕传文, 朱永刚. 高功率平板热管传热性能的实验研究[J]. 化工学报, 2023, 74(4): 1561-1569. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||