化工学报 ›› 2019, Vol. 70 ›› Issue (12): 4698-4709.DOI: 10.11949/0438-1157.20190894
收稿日期:
2019-08-11
修回日期:
2019-08-19
出版日期:
2019-12-05
发布日期:
2019-12-05
通讯作者:
李秀喜
作者简介:
江升(1994—),男,硕士研究生,基金资助:
Sheng JIANG(),Tianliang KUANG,Xiuxi LI()
Received:
2019-08-11
Revised:
2019-08-19
Online:
2019-12-05
Published:
2019-12-05
Contact:
Xiuxi LI
摘要:
过程安全一直以来是化学工业中尤为重要的问题之一,故障检测与诊断(FDD)作为化工异常工况管理最有力的工具之一,给过程安全提供了保障。随着深度学习的发展,很多智能学习算法已经被提出,然而这些算法却很少被应用到FDD中来。提出了一种基于稀疏过滤和逻辑回归(SFLR)算法的化工过程故障检测新方法。采用TE过程和环己烷无催化氧化制环己酮过程对提出的方法进行了验证,结果表明,所提出的方法均具有较高的诊断精度,案例研究表明提出的方法可以及时有效地诊断出故障。
中图分类号:
江升, 旷天亮, 李秀喜. 基于稀疏过滤特征学习的化工过程故障检测方法[J]. 化工学报, 2019, 70(12): 4698-4709.
Sheng JIANG, Tianliang KUANG, Xiuxi LI. A chemical process fault detection method based on sparse filtering feature learning[J]. CIESC Journal, 2019, 70(12): 4698-4709.
故障序号 | 过程变化 | 干扰类型 |
---|---|---|
1 | A/C物料进料比例扰动,B成分恒定 | 阶跃变化 |
2 | B组分扰动,A/C比例恒定 | 阶跃变化 |
3 | 组分D进料温度扰动 | 阶跃变化 |
4 | 反应器冷却水入口温度 | 阶跃变化 |
5 | 反应器冷却水入口温度 | 阶跃变化 |
6 | A组分泄漏 | 阶跃变化 |
7 | 组分C压力下降扰动 | 阶跃变化 |
8 | A、B、C进料成分 | 随机变化 |
9 | 组分D进料温度扰动 | 随机变化 |
10 | 组分C进料温度扰动 | 随机变化 |
11 | 反应器冷却水入口温度 | 随机变化 |
12 | 反应器冷却水入口温度 | 随机变化 |
13 | 反应器动力性能 | 缓慢漂移 |
14 | 反应器冷却水调节阀 | 堵塞 |
15 | 反应器冷却水调节阀 | 堵塞 |
16 | 未知 | 未知 |
17 | 未知 | 未知 |
18 | 未知 | 未知 |
19 | 未知 | 未知 |
20 | 未知 | 未知 |
表1 TE过程的20个预先设定的故障
Table 1 20 pre-set faults in TE process
故障序号 | 过程变化 | 干扰类型 |
---|---|---|
1 | A/C物料进料比例扰动,B成分恒定 | 阶跃变化 |
2 | B组分扰动,A/C比例恒定 | 阶跃变化 |
3 | 组分D进料温度扰动 | 阶跃变化 |
4 | 反应器冷却水入口温度 | 阶跃变化 |
5 | 反应器冷却水入口温度 | 阶跃变化 |
6 | A组分泄漏 | 阶跃变化 |
7 | 组分C压力下降扰动 | 阶跃变化 |
8 | A、B、C进料成分 | 随机变化 |
9 | 组分D进料温度扰动 | 随机变化 |
10 | 组分C进料温度扰动 | 随机变化 |
11 | 反应器冷却水入口温度 | 随机变化 |
12 | 反应器冷却水入口温度 | 随机变化 |
13 | 反应器动力性能 | 缓慢漂移 |
14 | 反应器冷却水调节阀 | 堵塞 |
15 | 反应器冷却水调节阀 | 堵塞 |
16 | 未知 | 未知 |
17 | 未知 | 未知 |
18 | 未知 | 未知 |
19 | 未知 | 未知 |
20 | 未知 | 未知 |
Fault | PCA | 改进的ICA | KPCA | 提出的方法(SFLR) | |||
---|---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | ||
1 | 99 | 100 | 100 | 100 | 100 | 100 | 99.75 |
2 | 98 | 96 | 98 | 98 | 98 | 98 | 98.375 |
3 | 2 | 1 | 1 | 1 | 4 | 8 | 9.875 |
4 | 6 | 99 | 65 | 96 | 9 | 100 | 99.875 |
5 | 23 | 20 | 24 | 23 | 25 | 27 | 31.375 |
6 | 99 | 100 | 100 | 100 | 99 | 100 | 100 |
7 | 42 | 100 | 100 | 100 | 100 | 100 | 100 |
8 | 97 | 89 | 97 | 98 | 95 | 97 | 95.25 |
9 | 1 | 1 | 1 | 2 | 4 | 4 | 9.75 |
10 | 30 | 18 | 70 | 67 | 43 | 51 | 90.5 |
11 | 22 | 72 | 43 | 66 | 24 | 81 | 68.875 |
12 | 97 | 90 | 98 | 97 | 97 | 98 | 98 |
13 | 93 | 95 | 95 | 94 | 94 | 95 | 95 |
14 | 81 | 100 | 100 | 100 | 79 | 100 | 99.875 |
15 | 1 | 2 | 1 | 2 | 5 | 7 | 12.5 |
16 | 13 | 16 | 76 | 73 | 30 | 52 | 56.625 |
17 | 74 | 93 | 87 | 94 | 74 | 95 | 92.125 |
18 | 89 | 90 | 90 | 90 | 90 | 90 | 90.25 |
19 | 0 | 29 | 26 | 29 | 3 | 49 | 24.625 |
20 | 32 | 45 | 70 | 66 | 41 | 55 | 77 |
表2 TE过程不同方法的故障检出率
Table 2 Failure detection rates for different methods of TE process/%
Fault | PCA | 改进的ICA | KPCA | 提出的方法(SFLR) | |||
---|---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | ||
1 | 99 | 100 | 100 | 100 | 100 | 100 | 99.75 |
2 | 98 | 96 | 98 | 98 | 98 | 98 | 98.375 |
3 | 2 | 1 | 1 | 1 | 4 | 8 | 9.875 |
4 | 6 | 99 | 65 | 96 | 9 | 100 | 99.875 |
5 | 23 | 20 | 24 | 23 | 25 | 27 | 31.375 |
6 | 99 | 100 | 100 | 100 | 99 | 100 | 100 |
7 | 42 | 100 | 100 | 100 | 100 | 100 | 100 |
8 | 97 | 89 | 97 | 98 | 95 | 97 | 95.25 |
9 | 1 | 1 | 1 | 2 | 4 | 4 | 9.75 |
10 | 30 | 18 | 70 | 67 | 43 | 51 | 90.5 |
11 | 22 | 72 | 43 | 66 | 24 | 81 | 68.875 |
12 | 97 | 90 | 98 | 97 | 97 | 98 | 98 |
13 | 93 | 95 | 95 | 94 | 94 | 95 | 95 |
14 | 81 | 100 | 100 | 100 | 79 | 100 | 99.875 |
15 | 1 | 2 | 1 | 2 | 5 | 7 | 12.5 |
16 | 13 | 16 | 76 | 73 | 30 | 52 | 56.625 |
17 | 74 | 93 | 87 | 94 | 74 | 95 | 92.125 |
18 | 89 | 90 | 90 | 90 | 90 | 90 | 90.25 |
19 | 0 | 29 | 26 | 29 | 3 | 49 | 24.625 |
20 | 32 | 45 | 70 | 66 | 41 | 55 | 77 |
测试FDR | 训练FDR | 测试FAR | 训练FAR |
---|---|---|---|
80.08 | 77.92 | 5.50 | 4.62 |
表3 环己烷无催化氧化过程故障检测训练和测试结果
Table 3 Fault detection training and test results of cyclohexane non-catalytic oxidation process /%
测试FDR | 训练FDR | 测试FAR | 训练FAR |
---|---|---|---|
80.08 | 77.92 | 5.50 | 4.62 |
1 | Shu Y, Ming L, Cheng F, et al. Abnormal situation management: challenges and opportunities in the big data era[J]. Computers & Chemical Engineering, 2016, 91: 104-113. |
2 | Ge Z, Song Z, Gao F. Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3543-3562. |
3 | Venkatasubramanian V, Rengaswamy R, Yin K, et al. A review of process fault detection and diagnosis(Ⅰ): Quantitative model-based methods[J]. Computers & Chemical Engineering, 2003, 27(3): 293-311. |
4 | Venkatasubramanian V, Rengaswamy R, Kavuri S N, et al. A review of process fault detection and diagnosis(Ⅱ): Qualitative models and search strategies[J]. Computers & Chemical Engineering, 2003, 27(3): 313-326. |
5 | Venkatasubramanian V, Rengaswamy R, Kavuri S N, et al. A review of process fault detection and diagnosis(Ⅲ): Process history based methods[J]. Computers & Chemical Engineering, 2003, 27(3): 327-346. |
6 | Isermann R. Model-based fault-detection and diagnosis-status and applications[J]. Annual Reviews in Control, 2005, 29(1): 71-85. |
7 | Frank P M, Ding X. Survey of robust residual generation and evaluation methods in observer-based fault detection systems[J]. Journal of Process Control, 1997, 7(6): 403-424. |
8 | Chen J, Liao C. Dynamic process fault monitoring based on neural network and PCA[J]. Journal of Process Control, 2002, 12(2): 277-289. |
9 | Lau C, Ghosh K, Hussain M, et al. Fault detection of the Tennessee Eastman process with multi-scale PCA and ANFIS[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 120(2): 1-14. |
10 | Lu N, Gao F, Yang Y, et al. PCA-based modeling and on-line monitoring strategy for uneven-length batch process [J]. Industrial & Engineering Chemistry Research, 2004, 43(13): 3343-3352. |
11 | Lu N, Gao F, Wang F. Sub-PCA modeling and on-line monitoring strategy for batch process[J]. AIChE Journal, 2004, 50(1): 255-259. |
12 | Albazzaz H, Wang X Z. Statistical process control charts for batch operations based on independent component analysis[J]. Industrial and Engineering Chemistry Research, 2004, 43(21): 6731-6741. |
13 | Lee J, Yoo C, Lee I. Statistical process monitoring with independent component analysis[J]. Journal of Process Control, 2004, 14(5): 467-485. |
14 | Yu J, Chen J, Rashid M M. Multiway independent component analysis mixture model and mutual information based fault detection and diagnosis approach of multiphase batch process[J]. AIChE Journal, 2013, 59(8): 2761-2779. |
15 | Zhang Y, Ma C. Fault diagnosis of nonlinear process using multiscale KPCA and multiscale KPLS[J]. Chemical Engineering Science, 2011, 66(1): 64-72. |
16 | Zhang Y, Zhou H, Qin S J, et al. Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares[J]. IEEE Transactions on Industrial Informatics, 2010, 6(1): 3-10. |
17 | Rad M A A, Tazdanpanah M J. Designing supervised local neural network classifiers based on EM clustering for fault diagnosis of Tennessee Eastman Process[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 146: 149-157. |
18 | Zhang J. Improved on-line process fault diagnosis through information fusion in multiple neural networks[J]. Computers & Engineering, 2006, 30(3): 558-571. |
19 | Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. |
20 | 郭丽丽, 丁世飞. 深度学习研究进展[J]. 计算机科学, 2015, 42(5): 28-33. |
Guo L L, Ding S F. Research progress on deep learning[J]. Computer Science, 2015, 42(5): 28-33. | |
21 | Bengio Y, Lamblin P, Dan P, et al. Greedy layer-wise training of deep networks[C]//International Conference on Neural Information Processing Systems, 2006: 153-160. |
22 | Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2014, 18(7): 1527-1554. |
23 | LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436. |
24 | Ngiam J, Pang W K, Chen Z, et al. Sparse filtering[C]//International Conference on Neural Information Processing Systems. Granada, Spain, 2011: 1125-1133. |
25 | Lei Y, Jia F, Lin J, et al. An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3137-3147. |
26 | Bielza C, Robles V, Larrañaga P. Regularized logistic regression without a penalty term: an application to cancer classification with microarray data[J]. Expert Systems with Applications, 2011, 38(5): 5110-5118. |
27 | Oommen T, Baise L G, Vogel R M. Sampling bias and class imbalance in maximum-likelihood logistic regression[J]. Mathematical Geosciences, 2011, 43(1): 99-120. |
28 | Downs J J, Vogel E F. A plant-wide industrial process control problem[J]. Computers and Chemical Engineering, 1993, 17(3): 245-255. |
29 | Shen Y, Ding S X, Haghani A, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman Process[J]. Journal of Process Control, 2012, 22(9): 1567-1581. |
30 | Zhang Y. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM[J]. Chemical Engineering Science, 2009, 64(5): 801-811. |
31 | Qin S J. Process data analytics in the era of big data[J]. AIChE Journal, 2014, 60(9): 3092-3100. |
[1] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[2] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[3] | 李珍宝, 李超, 王虎, 王绍瑞, 黎泉. MPP抑制铝镁合金粉尘爆炸微观机理研究[J]. 化工学报, 2023, 74(8): 3608-3614. |
[4] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[5] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[6] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[7] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[8] | 徐野, 黄文君, 米俊芃, 申川川, 金建祥. 多源信息融合的离心式压缩机喘振诊断方法[J]. 化工学报, 2023, 74(7): 2979-2987. |
[9] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[10] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[11] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[12] | 高学金, 姚玉卓, 韩华云, 齐咏生. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521. |
[13] | 黄磊, 孔令学, 白进, 李怀柱, 郭振兴, 白宗庆, 李平, 李文. 油页岩添加对准东高钠煤灰熔融行为影响的研究[J]. 化工学报, 2023, 74(5): 2123-2135. |
[14] | 肖忠良, 尹碧露, 宋刘斌, 匡尹杰, 赵亭亭, 刘成, 袁荣耀. 废旧锂离子电池回收工艺研究进展及其安全风险分析[J]. 化工学报, 2023, 74(4): 1446-1456. |
[15] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||