1 |
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
|
2 |
Sutter P W, Flege J I, Sutter E A, Epitaxial graphene on ruthenium [J]. Nat. Mater., 2008, 7(5): 406-411.
|
3 |
Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312(5777): 1191-1196.
|
4 |
Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Lett., 2009, 9(1): 30-35.
|
5 |
Bae S, Kim H K, Lee Y B, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nat. Nanotechnol., 2010, 5(8): 574-578.
|
6 |
Park S, Ruoff R S. Chemical methods for the production of graphenes[J]. Nat. Nanotechnol., 2009, 4(4): 217-224.
|
7 |
Cote L J, Kim F, Huang J. Langmuir-Blodgett assembly of graphite oxide single layers[J]. J. Am. Chem. Soc., 2009, 131(3): 1043-1049.
|
8 |
Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nat. Nanotechnol., 2008, 3(2): 101-105.
|
9 |
Gao W, Alemany L B, Ci L, et al. New insights into the structure and reduction of graphite oxide[J]. Nat. Chem., 2009, 1(5): 403-408.
|
10 |
Chen C M, Yang Q H, Yang Y G, et al. Self-assembled free-standing graphite oxide membrane[J]. Adv. Mater., 2009, 21(29): 3007-3011.
|
11 |
Li X, Wang H, Robinson J T, et al. Simultaneous nitrogen doping and reduction of graphene oxide[J]. J. Am. Chem. Soc., 2009, 131(43): 15939-15944.
|
12 |
Wei Y, Sun Z Y. Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene[J]. Current Opinion in Colloid and Interface Science, 2015, 20(5): 311-321.
|
13 |
Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nat. Nanotechnol., 2008, 3(9): 563-568.
|
14 |
Blake P, Brimicombe P D, Nai R R, et al. Graphene-based liquid crystal device[J]. Nano Lett., 2008, 8(6): 1704-1708.
|
15 |
De S, King P J, Lotya M, et al. Flexible, transparent, conducting films of randomly stacked graphene from surfactant -stabilized, oxide-free graphene dispersions[J]. Small, 2010, 6(3): 458-464.
|
16 |
Biswas S, Drzal L T. A novel approach to create a highly ordered monolayer film of graphene nanosheets at the liquid-liquid interface[J]. Nano Lett., 2009, 9(1): 167-172.
|
17 |
Gu W T, Zhang W, Li X M, et al. Graphene sheets from worm-like exfoliated graphite[J]. J. Mater. Chem., 2009, 19(21): 3367-3369.
|
18 |
Su C Y, Lu A Y, Xu Y P, et al. High-quality thin graphene films from fast electrochemical exfoliation[J]. ACS Nano, 2011, 5(3): 2332-2339.
|
19 |
Liu J, Yang H, Zhen S G, et al. A green approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of pencil core[J]. RSC Adv., 2013, 3(29): 11745-11750.
|
20 |
Parvez K, Wu Z S, Li R, et al. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts[J]. J. Am. Chem. Soc., 2014, 136(16): 6083-6091.
|
21 |
Wang G X, Wang B, Park J, et al. Highly efficient and large scale synthesis of graphene by electrolytic exfoliation[J]. Carbon, 2009, 47(14): 3242-3246.
|
22 |
Lu J, Yang J X, Wang J Z, et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids[J]. ACS Nano, 2009, 3(8): 2367-2375.
|
23 |
Wang J, Yin H S, Meng X M, et al. Preparation of the mixture of graphene nanosheets and carbon nanospheres with high desorptivity by electrolyzing graphite rod and its application in hydroquinone detection[J]. J. Electronal. Chem., 2011, 662(2): 317-321.
|
24 |
Singh V V, Gupta G, Batra A, et al. Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application[J]. Adv. Funct. Mater., 2012, 22(11): 2352-2362.
|
25 |
Zhong Y L, Swager T M. Enhanced electrochemical expansion of graphite for in situ electrochemical functionalization[J]. J. Am. Chem. Soc., 2012, 134(43): 17896-17899.
|
26 |
Zhou F, Huang H B, Xiao C X, et al. Electrochemically scalable production of fluorine modified graphene for flexible and high-energy ionogel-based micro-supercapacitors[J]. J. Am. Chem. Soc., 2018, 140(26): 8198-8205.
|
27 |
Wang J, Manga K K, Bao Q, et al. High-yield synthesis of few layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electorlyte[J]. J. Am. Chem. Soc., 2011, 133(23): 8888-8891.
|
28 |
Liu N, Luo F, Wu H, et al. One-step ionic liquids-assisted electrochemical synthesis of ionic-liquids-functionalized graphene sheets directly from graphite[J]. Adv. Funct. Mater., 2008, 18(10): 1518-1525.
|
29 |
Zhou M, Tang J, Cheng Q, et al. Few-layer graphene obtained by electrochemical exfoliation of graphite cathode[J]. Chem. Phys. Lett., 2013, 572: 61-65.
|
30 |
Suo L M, Borodin O, Gao T, et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938-943.
|
31 |
Zhou F, Liu S M, Yang B Q, et al. Highly selective electrocatalytic reduction of carbon dioxide to carbon monoxide on silver electrode with aqueous ionic liquids[J]. Electrochem. Commun., 2014, 46: 103-106.
|
32 |
Xiao H, Wu Z-S, Chen L, et al. One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density[J]. ACS Nano, 2017, 11(7): 7284-7292.
|
33 |
Wu Z-K, Lin Z, Li L, et al. Flexible micro-supercapacitor based on in-situ assembled graphene on metal template at room temperature[J]. Nano Energy, 2014, 10: 222-228.
|
34 |
Watanabe M, Thomas M L, Zhang S G, et al. Application of ionic liquids to energy storage and conversion materials and devices[J]. Chem. Rev., 2017, 117(10): 7190-7239.
|
35 |
El-Kady M F, Strong V, Dubin S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 2012, 335(6074): 1326-1330.
|
36 |
Wu Z-S, Parvez K, Feng X, et al. Graphene-based in-plane micro-supercapacitors with high power and energy densities[J]. Nat. Commun., 2013, 4: 2487-2494.
|
37 |
Heon M, Lofland S, Applegate J, et al. Continuous carbide-derived carbon films with high volumetric capacitance[J]. Energy Environ. Sci., 2011, 4(1): 135-138.
|
38 |
Ghosh A, Viet T L, Bae J J, et al. TLM-PSD model for optimization of energy and power density of vertically aligned carbon nanotube supercapacitor[J]. Sci. Rep., 2013, 3: 2939.
|
39 |
Pech D, Brunet M, Durou H, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon[J]. Nat. Nanotechnol., 2010, 5(9): 651-654.
|