1 |
Lewandowski A, Wilczynski K. General model of polymer melting in extrusion process[J]. Polimery-W, 2018, 63(6): 444-452.
|
2 |
Giboz J, Copponnex T, Mélé P. Microinjection molding of thermoplastic polymers: a review[J]. Journal of Micromechanics and Microengineering, 2007, 17(6): 96-109.
|
3 |
Liu Y J. Elastic behavior analysis of polymer melt extruding through capillary with an additional sinusoidal vibration[J]. Polymer Bulletin, 2006, 56(6): 599-606.
|
4 |
阮永金, 卢宇源, 安立佳. 管子模型[J]. 高分子学报, 2018, (12): 1493-1506.
|
|
Ruan Y J, Lu Y Y, An L J. Tube model[J]. Acta Polymerica Sinica, 2018, (12): 1493-1506.
|
5 |
Lai X M, Peng L F, Hu P, et al. Material behavior modelling in micro/meso-scale forming process with considering size/scale effects[J]. Computational Materials Science, 2008, 43(4): 1003-1009.
|
6 |
Chen C S, Chen S C, Liaw W L, et al. Rheological behavior of POM polymer melt flowing through micro-channels[J]. European Polymer Journal, 2008, 44(6): 1891-1898.
|
7 |
Yao D G, Kim B. Simulation of the filling process in micro channels for polymeric materials[J]. Journal of Micromechanics and Microengineering, 2002, 12(5): 604.
|
8 |
Razali A R, Qin Y. A review on micro-manufacturing, micro-forming and their key issues[J]. Procedia Engineering, 2013, 53: 665-672.
|
9 |
Tang D H, Marchesini F H, D’hooge D R, et al. Isothermal flow of neat polypropylene through a slit die and its die swell: bridging experiments and 3D numerical simulations[J]. Journal of Non-Newtonian Fluid Mechanics, 2019, 266: 33-45.
|
10 |
Tang D H, Marchesini F H, Cardon L, et al. Three-dimensional flow simulations for polymer extrudate swell out of slit dies from low to high aspect ratios[J]. Physics of Fluids, 2019, 31(9): 093103.
|
11 |
Tian H Q, Zhao D Y, Wang M J, et al. Study on extrudate swell of polypropylene in double-lumen micro profile extrusion[J]. Journal of Materials Processing Technology, 2015, 225: 357-368.
|
12 |
Liang J Z. Melt die-swell behavior of polyoxymethylene blended with ethylene-vinyl acetate copolymer and high-density polyethylene[J]. Polymer Testing, 2018, 68: 213-218.
|
13 |
Tian H Q, Zhao D Y, Wang M J, et al. Effect of die lip geometry on polymer extrudate deformation in complex small profile extrusion[J]. Journal of Manufacturing Science and Engineering, 2017, 139(6): 061005.
|
14 |
Behzadfar E, Ansari M, Konaganti V K, et al. Extrudate swell of HDPE melts (Ⅰ): Experimental[J]. Journal of Non-Newtonian Fluid Mechanics, 2015, 225: 86-93.
|
15 |
唐祯安, 王立鼎. 关于微尺度理论[J]. 光学精密工程, 2001, 9(6): 493-498.
|
|
Tang Z A, Wang L D. On microscale theory[J]. Optics and Precision Engineering, 2001, 9(6): 493-498.
|
16 |
叶超林, 吴宏武. 微流变特性及探究方法概述[J]. 中国塑料, 2015, 29(1): 7-11.
|
|
Ye C L, Wu H W. Properties and investigation methods of microrheology[J]. China Plastics, 2015, 29(1): 7-11.
|
17 |
Stephanou P S, Mavrantzas V G. Accurate prediction of the linear viscoelastic properties of highly entangled mono and bidisperse polymer melts[J]. Journal of Chemical Physics, 2014, 140(21): 214903.
|
18 |
Chan W L, Fu M W, Yang B. Study of size effect in micro-extrusion process of pure copper[J]. Materials & Design, 2011, 32(7): 3772-3782.
|
19 |
Deng Y J, Peng L F, Lai X M, et al. Constitutive modeling of size effect on deformation behaviors of amorphous polymers in micro-scaled deformation[J]. International Journal of Plasticity, 2017, 89: 197-222.
|
20 |
Gava A, Lucchetta G. On the performance of a viscoelastic constitutive model for micro injection moulding simulations[J]. Express Polymer Letters, 2012, 6(5): 417-426.
|
21 |
López-López M T, Rodríguez-Arco L, Zubarev A, et al. Effect of gap thickness on the viscoelasticity of magnetorheological fluids[J]. Journal of Applied Physics, 2010, 108(8): 083503.
|
22 |
Jonkkari I, Kostamo E, Kostamo J, et al. Effect of the plate surface characteristics and gap height on yield stresses of a magnetorheological fluid[J]. Smart Mater. Struct., 2012, 21(7): 075030.
|
23 |
Ewoldt R H, Johnston M T, Caretta L M. Experimental Challenges of Shear Rheology: How to Avoid Bad Data[M]. New York:Springer, 2015: 207-241.
|
24 |
Lyu P, Yang Z H, Zhao H, et al. Measurement of viscosity of liquid in micro-crevice[J]. Flow Measurement and Instrumentation, 2015, 46: 72-79.
|
25 |
王敏杰, 田慧卿, 赵丹阳. 聚合物熔体微尺度剪切黏度测量方法与黏度模型[J]. 机械工程学报. 2012, 48(16): 21-29.
|
|
Wang M J, Tian H Q, Zhao D Y. Micro-scale shear viscosity testing approach and viscosity model of polymer melts[J]. Journal of Mechanical Engineering, 2012, 48(16): 21-29.
|
26 |
徐斌, 王敏杰, 于同敏, 等. 微尺度效应下的聚合物熔体黏度理论及试验[J]. 机械工程学报. 2010, 46(19): 125-132.
|
|
Xu B, Wang M J, Yu T M, et al. Theoretical and experimental approach of the viscosity of polymer melt under micro-scale effect[J]. Journal of Mechanical Engineering, 2010, 46(19): 125-132.
|
27 |
Rosalina I, Bhattacharya M. Dynamic rheological measurements and analysis of starch gels[J]. Carbohydrate Polymers, 2002, 48: 191-202.
|
28 |
Ozkan S, Gillece T W, Senak L, et al. Characterization of yield stress and slip behaviour of skin/hair care gels using steady flow and LAOS measurements and their correlation with sensorial attributes[J]. International Journal of Cosmetic Science, 2012, 34(2): 193-201.
|
29 |
Ferry J D. Viscoelastic Properties of Polymers[M]. New York: John Wiley & Sons Inc., 1980: 1-31.
|
30 |
Song J S, Zhou H F, Wang X D, et al. Role of chain extension in the rheological properties, crystallization behaviors, and microcellular foaming performances of poly (butylene adipate-co-terephthalate)[J]. Journal of Applied Polymer Science, 2019, 136(14): 47322.
|